Out-of-Plane Vibration Analysis of Curved Beams Considering Shear Deformation Using DQM

전단변형이론 및 미분구적법을 이용한 곡선보의 면외 진동해석

  • 강기준 (호서대학교 자동차공학과) ;
  • 김장우 (호서대학교 디스플레이공학과)
  • Published : 2007.08.30

Abstract

The differential quadrature method(DQM) is applied to computation of eigenvalues of the equations of motion governing the free out-of-plane vibration for circular curved beams including the effects of rotatory inertia and transverse shearing deformation. Fundamental frequencies are calculated for the members with clamped-clamped end conditions and various opening angles. The results are compared with exact solutions or numerical solutions by other methods for cases in which they are available. The DQM provides good accuracy even when only a limited number of grid points is used.

곡선보(curved beam)의 회전관성(rotatory inertia) 및 전단변형(shear deformation)을 고려한 면외(out-of-plane) 자유진동을 해석하는데 미분구적법(DQM)을 이용하여 고정-고정 경계조건(boundary conditions)과 다양한 굽힘각(opening angles)에 따른 진동수(frequencies)를 계산하였다. DQM의 결과는 엄밀해(efact solution) 또는 다른 수치해석 결과와 비교하였으며, DQM은 적은 요소(grid points)를 사용하여 정확한 해석결과를 보여주었다.

Keywords

References

  1. Archer, R. R. (1960) Small Vibration of Thin Incomplete Circular Rings, International Journal of Mechanical Sciences, 1. pp.45-56 https://doi.org/10.1016/0020-7403(60)90029-1
  2. Bell, R. E., Casti, J. (1971) Differential Quadrature and Long-term Integration, Journal of Mathematical Analysis and Application, 34, pp.235-238 https://doi.org/10.1016/0022-247X(71)90110-7
  3. Den Hartog, J. P. (1928) The Lowest Natural Frequency of Circular Arcs, Philosophical Magazine, Series 7, 5, pp.400-408
  4. Farsa, J., Kukreti, A. R., Bert, C. W. (1993) Fundamental Frequency of Laminated Rectangular Plates by Differential Quadrature Method, International Journal for Numerical Methods in Engineering, 36, pp.2341-2356 https://doi.org/10.1002/nme.1620361403
  5. Hamming, R. W. (1973) Numerical Methods for Scientists and Engineers, 2nd Edition, McGraw-Hill Book Co., New York, N. Y
  6. Hoppe, R. (1871) The Bending Vibration of a Circular Ring, Crelle's Journal of Mathematics, 73, pp.158-170
  7. Irie, T., Yamada, G., Tanaka, K. (1982) Natural Frequencies of Out-of-Plane Vibration of Arcs, Transactions of the Americans Society of Mechanical Engineers, Journal of Applied Mechanics, 49, pp.910-913 https://doi.org/10.1115/1.3162635
  8. Jang, S. K., Bert, C. W,. Striz, A. G. (1989) Application of Differential Quadrature to Static Analysis of Structural Components, International Journal for Numerical Methods in Engineering, 28, pp,561-577 https://doi.org/10.1002/nme.1620280306
  9. Kang, K., Han, J. (1998) Analysis of a Curved Beam Using Classical and Shear Deformable Beam Theories, KSME International Journal, 12, pp.244-256 https://doi.org/10.1007/BF02947169
  10. Kang, K., Kim, B. (2002) In-Plane Extensional Vibration Analysis of Curved Beams Using DQM, Journal of Korean Society of Safety, 17, pp.99-104
  11. Kang, Y. J., Yoo, C. H. (1994) Thin-Walled Curved Beams. I: Formulation of Nonlinear Equations, Journal of Engineering Mechanics, ASCE, 120, pp. 2072-2099 https://doi.org/10.1061/(ASCE)0733-9399(1994)120:10(2072)
  12. Kim, J. G., Park, Y. K. (2006) A New Higher-Order Hybrid-Mixed Element for Curved Beam Vibrations, Journal of Computational Structural Engineering Institute of Korea, 19(2), pp.151-160
  13. Kukreti, A. R., Farsa, J., Bert, C. W. (1992) Fundamental Frequency Tapered Plates by Differential Quadrature, Journal of Engineering Mechanics, ASCE, 118, pp.1221-1238 https://doi.org/10.1061/(ASCE)0733-9399(1992)118:6(1221)
  14. Lamb, H. (1888) On the Flexure and Vibrations of a Curved Bar, Proceedings of the London Mathematical Society, 19, pp.365-376
  15. Lee, B. K., Oh, S. J. (1996) Out of Plane Free Vibrations of Circular Curved Beams, Journal of Computational Structural Engineering Institute of Korea, 8(1), pp.133-139
  16. Love, A. E. H. (1944) A Treatise of the Mathematical Theory of Elasticity, 4 th Edition, Dover Publications, New York
  17. Malik, M., Bert, C. W. (1994) Differential Quadrature Solution for Steady State Incompressible and Compressible Lubrication Problems, Journal of Tribology, ASME, 116, pp.296-302 https://doi.org/10.1115/1.2927214
  18. Ojalvo, U. (1962) Coupled Twisting-Bending Vibrations of Incomplete Elastic Rings, International Journal of Mechanical Sciences, 4, pp.53-72 https://doi.org/10.1016/0020-7403(62)90006-1
  19. Volterra, E., Morell, J. D. (1961) Lowest Natural Frequency of Elastic Arc for Vibrations outside the Plane of Initial Curvature, Journal of Applied Mechanics, ASME, 28, pp.624-627 https://doi.org/10.1115/1.3641794