Half-Scaled Substructure Test for the Performance Evaluation of a Transmission Tower subjected to Wind Load

송전철탑의 내풍안전성 평가를 위한 1/2축소부분구조 실험

  • 문병욱 (단국대학교 건축대학 건축공학과) ;
  • 민경원 (단국대학교 건축대학 건축공학과)
  • Published : 2007.10.30

Abstract

In this paper, a half-scaled substructure test was performed to evaluate the buckling and structural safety of an existing transmission tower subjected to wind load. A loading scheme was devised to reproduce the dead and wind loads of a prototype transmission tower, which uses a triangular jig that is mounted on the reduced model to which the similarity law of a half length was applied. As a result of the preliminary numerical analysis carried out to evaluate the stability of a specimen for the design load, is was confirmed that the calculated axial forces of tower leg members were distributed to $80{\sim}90%$ of an admissible buckling load. When the substructured transmission tower was loaded by 270% of its maximum admissible buckling load, it was failed due to the local buckling that is occurred in joints with weak constraints for out-of-plane behavior of leg members. By inspection of load-displacement curves, displacements and strains of members, it is considered that this local buckling was due to additional eccentric force by unbalanced deformation because the time that is reached to yielding stress due to the bending moment is different at each point of a same section.

본 논문에서는 풍하중에 대한 기존 송전철탑의 좌굴 및 구조적 안전성을 평가하기 위해서 축소부분구조 실험을 수행하였다. 원 송전철탑에 작용하는 중력 및 풍하중을 재현하기 위해서 1/2크기의 상사법칙을 적용한 축소모델의 상부에 설치된 삼각형태의 지그를 이용하여 가력하는 방법을 고안하였다. 설계하중에 대한 실험체의 안정성을 평가하기 위해서 예비수치 해석을 수행한 결과, 계산된 주주재의 축력은 허용좌굴하중의 $80{\sim}90%$사이에 분포하고 있음을 확인하였다. 최대허용좌굴 하중의 270%까지 가력한 결과, 주주재의 면외거동을 구속하는데 취약한 절점에서 발생한 국부좌굴로 인하여 송전철탑이 파괴되었다. 하중-변위 곡선, 변위, 부재별 변형률을 검토한 결과, 이러한 국부좌굴의 발생은 동일한 단면내에서도 휨모멘트로 인해 항복응력에 도달하는 시간이 위치별로 다르기 때문에 변형의 불균형에 의해서 발생한 부가적인 편심에 기인한 것으로 판단된다.

Keywords

References

  1. 국립방재연구소 (2003) 태풍 매미 피해 현장조사 보고서, pp.255-290
  2. 김우범, 이경진 (1998) 765kV 송전철탑 실규모 하중시험, 한국강구조학회지 기술기사, 10(2), pp.134-141
  3. 김우범, 이경진 (1997) 철탑구조의 설계하중 및 응력산정, 한국강구조학회지 학술기사, 9(2), pp.47-55
  4. 한국전력공사 (2004) 가공송전용 철탑설계기준
  5. Alam M.J., Santhakumar A.R. (1996) Reliability Analysis and Full-Scale Testing of Transmission Tower, Journal of Structural Engineering, ASCE, 122(3), pp.338-344 https://doi.org/10.1061/(ASCE)0733-9445(1996)122:3(338)
  6. ASCE manuals and reports on engineering practice No. 52; guide for design of steel transmission towers (1988) 2nd Ed., ASCE, New York, NY
  7. Indian standard code of practice for use of structural steel in overhead transmission line towers (1992) IS:802, Bureau of Indian Standards, New Delhi. India
  8. Momomura Y., Marukawa H., Okamura T., Hongo E., Ohkuma T. (1997) Full-scale measurements of wind-induced vibration of a transmission line system in a mountainous area, Journal of Wind Engineering and Industrial Aerodynamics, 72, pp.241-252 https://doi.org/10.1016/S0167-6105(97)00240-7
  9. Okamura T., Ohkuma T., Hongo E., Okada H. (2003) Wind response analysis of a transmission tower in a mountainous area, Journal of Wind Engineering and Industrial Aerodynamics, 91. pp. 241-252