References
-
Kale, S. P., Carvalho, F. P., Raghu, K., Sherkhane, P. D., Pandit, G. G. and Rao, A. M. (1999) Studies on degradation of
$^{14}C$ -chlorpyrifos in the marine environment. Chemosphere. 39, 969-976 https://doi.org/10.1016/S0045-6535(99)00028-4 - Mohan, S. V., Sirisha, K., RaO, N. C., Sarma, P. N. and Reddy, S. J. (2004) Degradation of chlorpyrifos contaminated soil by bioslurry reactor operated in sequencing batch mode: bioprocess monitoring. J. Hazard. Mater. B. 116, 39-48 https://doi.org/10.1016/j.jhazmat.2004.05.037
- Hernandez, J., Robledo, N. R. Velasco, L., Quintero, R. Pickard, M. A. and Duhalt, R. V. (1998) Chloroperoxidasemediated oxidation of organophosphorus pesticides. Pesticide biochemistry and physiology. 61, 87-94 https://doi.org/10.1006/pest.1998.2351
- Manclus J. J. and Montoya, A. (1995) Development of immunoassays for the analysis of chlorpyrifos and its major metabolite 3,5,6-trichloro-2-pyridinol in the aquatic environment. Analytica Chemical Acta. 311, 341-348 https://doi.org/10.1016/0003-2670(95)00044-Z
- Francis, F. L., Vidal, M. L. and Budzinski, H. (1998) Modelling biological efficacy decrease and rate of degradation of chlorpyrifos-methyl on wheat stored under controlled conditions. J. Stored Products Research. 34, 341-354 https://doi.org/10.1016/S0022-474X(98)00013-7
- Robertson, L. N., Chandler, K. J., Stickley, B. D. A., Cocco, R. F. and Ahmetagic, M. (1998) Enhanced microbial degradation implicated in rapid loss of chlorpyrifos from the controlledrelease formulation suSCCom Blue in soil. Crop Protection. 17, 29-33 https://doi.org/10.1016/S0261-2194(98)80009-4
- White, N. D. G., Jayas, D. S. and Demianyk, C. J. (1997) Degradation and biological impact of chlorpyrifos-methyl on stored wheat and pirimiphos-methyl on stored maize in western Canada. J. Stored Products Research. 33, 125-135 https://doi.org/10.1016/S0022-474X(96)00049-5
- Newcomb, R. D., Campbell, P. M., Russell, R. J. and Oakeshott, J. G. (1997) cDNA cloning, baculovirus-expression and kinetic properities of the esterase, E3, involved in organophosphorus resistance in Lucilia cuprina. Insect Biochem. Molec. Biol. 27, 15-25 https://doi.org/10.1016/S0965-1748(96)00065-3
- Bending, G. D., Friloux, M. and Walker, A. (2002) Degradation of contrasting pesticides by white rot fungi and its relationship with ligninolytic petential. Microbiology letters. 212, 59-63 https://doi.org/10.1111/j.1574-6968.2002.tb11245.x
- Heng, J. and Webster, G. R. (1997) Persistence, penetration, and surface availability of chlorpyrifos, its oxon, and 3,5,6- trichloro-2-pyridinol in Elm bark. J. Agric. Food Chem. 45, 4871-4876 https://doi.org/10.1021/jf970268i
-
Li, Q. W., Guo, Y. H. and Hu, G. W. (2005) Nanosize and bimodal porous polyoxotungstate-anatase
$TiO_2$ composites: Preparation and photocatalytic degradation of organophosphorus pesticide using visible-light excitation. Microporous and Mesoporous Materials. 87, 1-9 https://doi.org/10.1016/j.micromeso.2005.07.035 - Yu, J. J. (2002) Removal of organophosphate pesticides from wastewater by supercritical carbon dioxide extraction. Water Research. 36, 1095-1101 https://doi.org/10.1016/S0043-1354(01)00293-7
- Liu, B., McConnell, L. L. and Torrents, A. (2001) Hydrolysis of chlorpyrifos in natural waters of the Chesapeake Bay. Chemosphere. 44, 1315-1323 https://doi.org/10.1016/S0045-6535(00)00506-3
- Matheson, L. J and Tratnyek, P. G, (1994) Reductive dehalogenation of chlorinated Methanes by iron metal. Envirion. Sci. Technol. 28, 2045-2053 https://doi.org/10.1021/es00061a012
- Keum, Y. S. and Qing, X. Li. (2004) Reduction of nitroaromatic pesticides with zerovalent iron. Chemosphere. 54, 255-263 https://doi.org/10.1016/j.chemosphere.2003.08.003
- Singh, J., Comfort, S. D. and Shea, P. J. (1998) Remediating RDX-contaminated water and soil using zerovalent iron. Environ. Qual. 27, 1240-1245
- Scherer M. M., Richter, S., Valentine, R. L. and Alvare, P. J. (2000) Chemistry and microbiology of reactive barriers for in situ ground-electride. Environ. Sci. Technol. 31, 363-411
- Shin, H. S. (2002) Dechlorination of organochlorine insecticide endosulfan by zerovalent iron. M. S. Thesis, Kyungpook National University
- Bayer, P. and Finkel, M. (2005) Modelling of sequential groundwater treatment with zero valent iron and granular activated carbon, J. Contaminant Hydrology. 78, 129-146 https://doi.org/10.1016/j.jconhyd.2005.03.005
- Agrawal, A. and Reatnyek, P. G. (1996) Reduction of nitro aromatic compounds by zerovalent iron metal. Environ. Sci. Technol. 30, 153-160 https://doi.org/10.1021/es950211h
- Liao, C. H., Kang, S. F. and Hsu, Y. W. (2003) Zero-valent iron reduction of nitrate in the presence of ultraviolet light, organic matter and hydrogen peroxide. Water Research. 37, 4109-4118 https://doi.org/10.1016/S0043-1354(03)00248-3
- Shea, P. J., Machacek, T. A. and Comfort S. D. (2004) Accelerated remediation of pesticide-contaminated soil with zerovalent iron. Environmental Pollution. 132, 183-188 https://doi.org/10.1016/j.envpol.2004.05.003
- Liao, C. J., Chung, T. L., Chen, W. L. and Kuo, S. L. (2007) Treatment of pentachlorophenol-contaminated soil using nanoscale zero-valent iron with hydrogen peroxide. J. Molecular Catalysis A: Chemical. 265, 189-194 https://doi.org/10.1016/j.molcata.2006.09.050
- Zhang, W. X. (2003) Nano scale iron particles for environmental remediation: an overview. J. Nanopart. Res. 5, 323-332 https://doi.org/10.1023/A:1025520116015
- Glavee, G. N., Klabunde, K. J., Sorensen, C. M. and Hadlipanayis, G. C. (1995) Chemistry of borohydride reduction of iron (II) and iron (III) ions in aqueous and nonaqueous mediaformation of nanoscale Fe0, FeB, and Fe2B powders. Inorg. Chem. 34, 28-35 https://doi.org/10.1021/ic00105a009
- Han, L. B., Choi, N. and Tanaka, M. (1997) The first example of facile oxidative addition of carbon-tellurium bonds to zerovalent Pt, Pd, and Ni complexes. J. Am. Chem. Soc. 119, 1795- 1796 https://doi.org/10.1021/ja963798o
- Choi, C. L., Park, M., Lee, D. H., Rhee I. K., Song, K. S., Kang, S. J. and Kim, J. E. (2006) Degradation of chlorothalonil by zerovalent iron-montmorillonite complex. Kor. J. Environ.Agri. 25, 257-261 https://doi.org/10.5338/KJEA.2006.25.3.257
- Gordon C. C. Y. and Lee, H. L. (2005) Chemical reduction of nitrate by nanosized iron: kinetics and pathways. Water Research. 39, 884-894 https://doi.org/10.1016/j.watres.2004.11.030
- Joo, S. H., Feitz, A. J., Sedlak, D. L. and Waite, T. D. (2005) Quantification of the oxidizing capacity of nanoparticulate zerovalent iron. Environ. Sci. Technol., 39, 1263-1268 https://doi.org/10.1021/es048983d