Removal of Cyanogenic Compounds in Apricot Kernel during Heating Process

가열조리방법을 통한 행인 내 시안화합물의 저감화

  • Published : 2007.12.31

Abstract

Apricot Kernel, consumed as herbal medicine, contains amygdalin which generate HCN upon hydrolysis. Dyspnea was reported by ingesting large amount of apricot kernel, and neurological disorders such as tropic ataxic neuropathy or konzo were known as chronic toxicity of amygdalin. Other cyanogen containing plants, including flaxseed and almond, are consumed as food around the world. Moreover, some of them are promoted as functional food, leading to higher consumption, and posing health risk by cyanogenic components. The objective of this study was to find a method for the reduction of the cyanogenic compound, using apricot kernel as a model food. The most effective reduction was obtained by boiling the slices of the kernel for one hour in pH 1 HCl solution, showing 90% removal. However, the common process known to reduce the cyanogen contents, i.e., long incubation at the low temperature, did not show significant change in cyan concentration. Our data contribute to the safety of the plants containing cyanogenic compounds if they were to be developed as foodstuff.

한약재로 주로 이용되는 행인은 약리작용이 강하고 독성작용을 나타내는 아미그달린을 다량 함유하고 있다. 아미그달린의 다량 섭취 시 호흡곤란 등의 급성독성이 나타날 수 있으며, 지속적인 섭취시에는 Konzo나 열대성 운동신경장애와 같은 만성독성이 나타날 우려가 있다. 이에 여러 가지 조리 방법을 통해 식물체 내 시안화합물의 잔류량을 줄이고자 많은 연구가 진행되었다. 본 연구에서는 통, 절편, 가루 형태의 행인을 건식가열법 또는 습식가열법을 이용하여 조리하였고, 일반적으로 조리 및 가공 시간이 증가함에 따라 총 시안 함량이 감소하는 경향을 보였다. 특히 pH 1의 염산 용액에 한 시간 동안 습식가열한 행인의 경우 약 90%정도 시안화합물이 감소효과를 보였으나 시안화합물의 저감화에 일반적으로 사용되는 $40^{\circ}C$에서 장시간 보관하는 것은 별다른 효과가 없는 것으로 나타났다. 본 연구결과는 시안화합물을 함유한 식물체의 식품으로의 안전성 확보에 기여할 수 있을 것으로 사료된다.

Keywords

References

  1. 홍진환, 이동하, 한상배, 이동호, 이강봉, 박재석, 정형욱, 이숙연, 박성규, 박은령, 홍경현, 한정우, 김명철, 송인상: 식품 원료 중 독성물질 탐색 및 분석법 확립: 행인과 도 인, 아마인 중 시안배당체의 분석 및 저감화. 식품의약품 안전청연구보고서, 8-1, 442-452 (2004)
  2. Silem, A., Gnter, H.O., Einfeldt, J., Boualia, A.: The occurrence of mass transport processes during the leaching of amygdalin from bitter apricot kernels: detoxification and flavour improvement. Int. J. Food Sci. Technol., 41, 201-213 (2006) https://doi.org/10.1111/j.1365-2621.2005.01049.x
  3. Curtis, A.J., Grayless, C.C., Fall, R.: Simultaneous determination of cyanide and carbonyls in cyanogenic plants by gas chromatography-electron capture/photoionization detection. Analyst, 127, 1446-1449 (2002) https://doi.org/10.1039/b205378k
  4. Rietjens, I.M.C.M., Martena, M.J., Boersma, M.G., Spiegelenberg, W., Alink, G.M.: Molecular mechanism of toxicity of important foodborne phytotoxin. Mol. Nutr. Res., 49, 131-158 (2005) https://doi.org/10.1002/mnfr.200400078
  5. Park, H.J., Yoon, S.H., Han, L.S., Zhen, L.T., Jung, K.H., Uhm, Y.K., Lee, J.H., Jeong, J.S., Joo, W.S., Yim, S.V., Chung, J.H., Hong, S.P.: Amygdalin inhibits genes related to cell cycle in SNU-C4 human colon cancer cells. World J. gastroenterol., 33, 5156-5161 (2005)
  6. Chang, H.K., Shin, M.S., Yang, H.Y., Lee, J.W., Kim, Y.S., Lee, M.H., Kim, J., Lim, K.H., Kim, C.J.: Amygdalin induces apoptosis through regulation of Bax and Bcl-2 expressions in human DU145 and LNCaP prostate cancer cell. Biol. Pharm. Bull. Pharm. Soc. Japan, 29, 1597-1602 (2006) https://doi.org/10.1248/bpb.29.1597
  7. Milazzo, S., Ernst, E., Lejeune, S.: Laetrile treatment for cancer. Support. care cancer, 15, 583-595 (2007) https://doi.org/10.1007/s00520-006-0168-9
  8. Francisco, I.A., Pinotti, M.H.P.: Cyanogenic glycosides in plants. Braz. Arch. Biol. Technol., 43, 487-492 (2000) https://doi.org/10.1590/S1516-89132000000500007
  9. Cumings, T.F.: The treatment of cyanide poisoning. Occup. Med. (Chic Ill), 54, 82-85 (2004) https://doi.org/10.1093/occmed/kqh020
  10. Suchard, J.R., Wallace, K.L., Gerkin, R.D.: Acute cyanide toxicity caused by apicot kernel ingestion. Ann. Emerg. Med., 32, 742-744 (1998) https://doi.org/10.1016/S0196-0644(98)70077-0
  11. Tuncel, G., Nout, M.J.R., Brimer, L.: The effects of grinding, soaking and cooking on the degradation of amygdalin of bitter apricot seeds. Food chem., 53, 447-451 (1995) https://doi.org/10.1016/0308-8146(95)99841-M
  12. Cardoso, A.P., Mirione, E., Ernesto, M., Massaza, F., Cliff, J., Haque, M.R., Bradbury, J.H.: Processing of cassava roots to remove cyanogens. J. Food Compost. Anal., 18, 451-460 (2005) https://doi.org/10.1016/j.jfca.2004.04.002
  13. Agbor, E.T., Mbome, L.I.: The effects of processing techniques in reducing cyanogen levels during production of some Cameroonian cassava foods. J. Food Compost. Anal., 19, 354-363 (2006) https://doi.org/10.1016/j.jfca.2005.02.004
  14. Bradburry, J.H.: Simple wetting method to reduce cyanogen content of cassava flour. J. Food Compost. Anal., 19, 388-393 (2006) https://doi.org/10.1016/j.jfca.2005.04.012
  15. Cumbana, A.: Reduction of cyanide content of cassava flour in Mozambique by the wetting method. Food chem., 101, 894-897 (2006) https://doi.org/10.1016/j.foodchem.2006.02.062
  16. 조혜전: 이온 크로마토그래피를 이용한 식용 및 약용 식물 내 시안화합물 분석. 서울대학교 대학원 (2007)
  17. Bradbury, J.H., Bradbury, M.G., Egan, S.V.: Comparison of methods of analysis of cyanogens in cassava. Acta Horticulturae., 375, 87-96 (1994)
  18. Padmaja, G.: Cyanide detoxification in cassava for food and feed used. Crit. Rev. Food Sci. Nutr., 35, 299-339 (1995) https://doi.org/10.1080/10408399509527703
  19. Gezer, I., Haciseferogullarl, H., Demir, F.: Some physical properties of Hacl.haliloglu apricot pit and its kernel. J. Food Eng., 56, 49-57 (2002)
  20. Oke, O.L.: Eliminating cyanogens from cassava through processing: technology and tradition. Acta Horticulturae., 375, 163-174 (1994)
  21. Bainbridge, Z., Harding, S., French, L., Kapinga, R., Westby, A.: A study of the role of tissue disruption in the removal of cyanogens during cassava root processing. Food Chem., 62, 291-297 (1998) https://doi.org/10.1016/S0308-8146(97)00215-X
  22. 조용진: Amygdalin의 In Vitro 분해에 관한 연구. 서울대학교 대학원 (2007)
  23. Obilie, E.M., Kwaku, T.D., Amoa, W.K.: Souring and breakdown of cyanogenic glucosides during the processing of cassava into akyeke. Int. J. Food Micobiol., 93, 115-121 (2004) https://doi.org/10.1016/j.ijfoodmicro.2003.11.006