Rapid Enumeration of Salmonella spp. in Contaminated Pork Meat Using Competitive PCR

Competitive PCR을 이용한 돼지고기 오염 살모넬라의 신속 계수

  • Published : 2007.12.31

Abstract

In this study, the competitive polymerase chain reaction (cPCR) was used to develop a direct enumeration method of Salmonella spp. in pork meat. After comparing three DNA extraction methods, the modified guanidine thiocyanate-phenol-chloroform method was chosen for Salmonella DNA extraction in artificially inoculated pork meat. The previously reported 284-bp invA gene (Rahn et al. Mol. Cell. Probes 1992) was tested for specificity, and 57 Salmonella strains and 24 non-Salmonella strains were evaluated. All Salmonella strains tested were invA positive, and all non-Salmonella strains produced no false positive amplification products. The detection limit achieved was as low as 1,460 colony-forming units (cfu) per 0.1g of pork meat. For cPCR, the invA gene, which features a 82 bp-deletion, was cloned in the pGEM-4Z vector. A known amount of competitor DNA, which has the same primer binding sites, was co-amplified with Salmonella chromosomal DNA from the artificially inoculated pork meat. The cell-number determined by cPCR was approximately equal to the cfu from the most probable number (MPN) method. Finally, the whole procedure took only 5 hr.

돼지고기에 오염된 살모넬라의 수를 직접 측정하는 방법으로 경쟁적 PCR(competitive PCR)을 사용하였다. 세가지 DNA추출방법을 비교한 후 guanidine thiocyanate-phenol-chloroform 방법을 일부 수정하여 인위적으로 살모넬라를 오염시킨 돼지고기로부터 DNA를 직접 추출하는 방법으로 선택하였다. Rahn 등(Mol. Cell. Probes 1992년)이 이미 보고한 284-bp iuvA gene의 특이성을 평가하기 위해 살모넬라 57균주와 살모넬라가 아닌 균주 24개를 사용하였다. 시험해 본 모든 살모넬라 균주는 invA 양성으로 살모넬라가 아닌 모든 균주는 invA 음성으로 판명되었으며 살모넬라가 아닌 균주 중 양성으로 잘 못 판명된 경우는 없었다. 돼지고기 0.1 g을 사용할 경우 검출한계는 1,460 cfu였다. 경쟁적 PCR을 위해 invA gene중 82-bp를 결실시킨 DNA조각을 pGEM-4Z백터에 클로닝을 하였다. 인위적으로 오염된 돼지고기로부터 추출한 살모넬라 염색체 DNA와 이와 같은 primer결합자리를 가진 경쟁 DNA를 동시에 경쟁적 PCR로 증폭하였다. 경쟁적 PCR을 사용하여 결정한 균수와 MPN방법으로 결정한 균수는 거의 유사하였으며 전체 과정을 수행하는 데 약 5시간이 소요되었다.

Keywords

References

  1. Olsen, J.E., Aabo, S., Hill, W., Notermans, S., Wernars, K., Granum, P.E., Popovic, T., Rasmussen, H.N. and Olsvik, O.: Probes and polymerase chain reaction for the detection of food-borne bacterial pathogens. International J. Food Microbiol. 28, 1-78 (1995) https://doi.org/10.1016/0168-1605(94)00159-4
  2. Hanai, K., Satake, M., Naakanishi, H. and Venkateswaran, K.: Comparison of commercially available kits for detection of Salmonella strains in foods. Appl. Environ. Microbiol. 63, 775-778 (1997)
  3. Hoorfar, J., Baggesen, D.L. and Porting, P.H.: A PCR-based strategy for simple and rapid identification of rough presumptive Salmonella isolates. J. Microbiol. Methods 35, 77-84 (1999) https://doi.org/10.1016/S0167-7012(98)00108-0
  4. Andrews, W.H., Poelma, P.L. and Wilson, C.R.: Isolation and identification of Salmonella species. In Bacterial Analytical manual, 6th Ed. (US Food and Drug Administration) Association of Official Analytical Chemists, Arlington, VA (1984)
  5. Van Leusden, F.M., Van Schothorst, M. and Beckers, H.J.: The standard Salmonella isolation method. In Isolation and Identification Methods for Food Poisoning Organisms (Corry, J.E.L., Roberts, D., and Skinner, F.A.) Academic Press, London, pp. 35-49 (1982)
  6. Zhu, Q., Lim, C.K. and Chan, Y.N.: Detection of Salmonella typhi by polymerase chain reaction. J. Appl. Bacteriol. 80, 244-251 (1996) https://doi.org/10.1111/j.1365-2672.1996.tb03216.x
  7. Aznar, E., Alarcon, T., Buendia, Garcia-Penuela and Lopez- Brea, M.: Detection of decreased susceptibility to fluoroquinolones in Salmonella spp. by five different methods including real-time PCR. International J. Antimicrobial Agents 30, 67-71 (2007) https://doi.org/10.1016/j.ijantimicag.2007.01.018
  8. Baumler, A.J., Heffron, F. and Reissbrodt, R.: Rapid detection of Salmonella enterica primers specific for iroB. J. Clin. Microbiol. 35, 1224-1230 (1997)
  9. Botteldoorn, N., Coillie, E.V., Grijspeerdt, K., Werbrouck, H., haesebrouck, F., Donn, E., D'Haese, E., Heyndrickx, M., Pasmans, F. and Herman, L.: Real-time reverse transcription PCR for the quantification of the mntH expression of Salmonella enterica as a function of growth phase and phagosomelike conditions. J. Microbiol. methods 66, 125-135 (2006) https://doi.org/10.1016/j.mimet.2005.11.003
  10. Cano, R.J., Ramussen, S.R., Fraga, G.S. and Palomares, J.C.: Fluorescent detection-polymerase chain reaction (FD-PCR) assay on microwell plates as a screening test for Salmonellas in foods. J. Appl. Bacteriol. 75, 247-253 (1993) https://doi.org/10.1111/j.1365-2672.1993.tb02773.x
  11. Chevrier, D., Popoff, M.Y., Dion, M.P., Hermant, D. and Guesdon, J.L.: Rapid detection of Salmonella subspecies I by PCR combined with nonradioactive hybridization using covalently immobilized oligonucleotide on a microplate. FEMS Immunol. Med. Microbiol. 10, 245-252 (1995) https://doi.org/10.1111/j.1574-695X.1995.tb00039.x
  12. Cohen, H.J., Mechanda, S.M. and Lin, W.: PCR amplification of the fimA gene sequence of Salmonella spp. Appl. Environ. Microbiol. 12, 4303-4308 (1996)
  13. Cortez, A.L.L., Carvalho, A.C.F.B., ikuno, A.A. and Vidal- Martins, A.M.C.: identification of Salmonella spp. isolates from chiken abattoirs by mutiplex-PCR. Research in Veterinary Science 81, 340-344 (2006) https://doi.org/10.1016/j.rvsc.2006.03.006
  14. Doran, J.L., Collinson, S.K., Buria, J., Sarlos, G., Todd, E.C.D., Munro, C.K., Kay, C.M., Banser, P.A., Peterkin, P.I. and Kay, W.W.: DNA-based diagnostic testsfor Salmonella species targeting agfA, the structural gene for thin, aggregative fimbriae. J. Clin. Microbiol. 31, 2263-2273 (1993)
  15. Fluit, A.C., Widjojoatmodjo, M.N., Box, A.T.A., Torensma, R. and Verhoef, J.: Rapid detection of Salmonellae in poultry with the magnetic immunopolymerase chain reaction assay. Appl. Environ. microbiol. 59, 1342-1346 (1993)
  16. Hashimoto, Y., Itho, Y., Fuginaga, Y., Khan, A.Q., Sultana, F., Miyake, m., Horose, K., Yamamoto, H. and Ezaki, T.: Development of nested PCR based on the viaB sequence to detect Salmonella typhi. J. Clin. Microbiol. 33, 775-777 (1995)
  17. Kwang, J., Littledike, E.T. and Keen, J.E.: Use of the polymerase chain reaction for Salmonella detection. Lett. Appl. Microbiol. 22, 46-51 (1996) https://doi.org/10.1111/j.1472-765X.1996.tb01106.x
  18. Mahon, J. and Lax, A.J.: A quantitative polymerase chain reaction method for the detection in avian feces of Salmonella carrying the spvR gene. Epidemiol. Infect. 111, 455-464 (1993) https://doi.org/10.1017/S0950268800057186
  19. Malorny, B., Bunge, C. and Helmuth, R.: A real-time PCR for the detection of Salmonella Enteritidis in poultry meat and consumption eggs. J. Microbiol. methods 70, 245-251 (2007) https://doi.org/10.1016/j.mimet.2007.04.013
  20. Murphy, N.M., McLauchlin, J., Ohai, C. and Grant K.A.: Construction and evaluation of a microbiological positive process internal control for PCR-based examination of food samples for Listeria monocytogenes and Salmonella enterica. International J. Food Microbiol. doi:10.1016/j.ijfoodmicro. 2007.06.006
  21. Patel, J.R., Bhagwat, A.A., Sanglay, G.C. and Solomon, M.B.: Rapid detection of Salmonella from hydrodynamic pressured-treated poultry using molecular beacon real-time PCR. Food Microbiol. 23, 39-46 (2006) https://doi.org/10.1016/j.fm.2005.01.011
  22. Rahn, K, De Grandis, S.A., Clarke, R.C., McEwen, S.A., Galan, J.E., Ginnocchio, C., Curtiss III, R. and Gyles, C.L.: Amplification of an invA gene sequence of Salmonella typhimurium by polymerase chain reaction as a specific method of detection of Salmonella. Mol. Cell. Probes 6, 271-279, (1992) https://doi.org/10.1016/0890-8508(92)90002-F
  23. Rexach, L., Dilassier, F. and Fach, P.: Polymerase chain reaction for Salmonella virulence-associated plasmid genes: a new tool in Salmonella epidemiology. Epidemiol. Infect. 112, 33-43 (1994) https://doi.org/10.1017/S0950268800057393
  24. Way, J.S., Josephson, K.L., Pillai, S.D., Abbaszadegan, M., Gerba, C.P. and Pepper, I.L.: Specific detection of Salmonella spp. by multiplex polymerase chain reaction. Appl. Environ. Microbiol. 59, 1473-1479 (1993)
  25. Yeh, K.-S.Chen, T.-H., Liao, C.-W. and Lo, H.-C.: PCR amplification of the Salmonella typhimurium fimY gene sequence to detect the Salmonella species. International J. Food Microbiol. 78, 227-234 (2002) https://doi.org/10.1016/S0168-1605(02)00115-0
  26. Choi, W.S. and Hong C.-H.: Rapid enumeration of Listeria monocytogenes in milk using competitive PCR. International J. Food Microbiol. 84, 79-85 (2003) https://doi.org/10.1016/S0168-1605(02)00401-4
  27. Choi, W.S.: Detection of Salmonella in milk by polymerase chain reaction. J. Food Hyg. Safety 15, 262-266 (2000)
  28. Choi, W.S.: Detection of Yersinia enterocolitica in milk by polymerase chain reaction. Food Sci. Biotechnol. 10, 451-454 (2001)
  29. Lim, H., Hong, C.-H. and Choi, W.S.: Rapid enumeration of Listeria monocytogenes in pork meat using competitive PCR. Food Sci. Biotechnol. 14, 387-391 (2005)
  30. Collazo, C.M. and Galn, J.F.: The invasion-associated type III protein secretion system in Salmonella.-a review. Gene 192, 51-59 (1997) https://doi.org/10.1016/S0378-1119(96)00825-6
  31. Galn, J.E. and Curtis III, R.: Distribution of the invA, -B, -C, and -D genes of Salmonella typhimurium among other Salmonella serovars: invA mutants of Salmonella typhi are deficient for entry into mammalian cells. Infect. Immun. 59, 2901-2908 (1991)
  32. Hein, I., Flekna, G., Krassnig, M. and Wagner, M.: Real-time PCR for the detection of Salmonella spp. in food: An alternative approach to a conventional PCR system suggested by the FOOD-PCR project. J. Microbiol. Methods 66, 538-547 (2006) https://doi.org/10.1016/j.mimet.2006.02.008
  33. Isogai, E., Makungu, C., Yabe, J., Sinkala, P., Nambota, A., Isogai, H., Fukushi, H., Silungwe, M., Mubita, C., Syakalima, M., Hang'ombe, M., Kozaki, S. and Yasuda, J.: Detection of Salmonella invA by isothermal and chimeric primerinitiated amplification of nucleic acids (ICAN) in Zambia. Coparative Immunology, Microbiology & Infectious Diseases 28, 363-370 (2005) https://doi.org/10.1016/j.cimid.2005.10.001
  34. Kim, J., Demeke, T., Clear, R.M. and Patrick, S.K.: Simultaneous detection by PCR of Escherichia coli, Listeria monocytogenes and Salmonella typhimurium in artificially inoculated wheat grain. International J. Food Microbiol. 111, 21-25 (2006) https://doi.org/10.1016/j.ijfoodmicro.2006.04.032
  35. Nam, H.-M., Srinivasan, V., Gillespie, B.E., Murinda, S.E. and Oliver, S.P.: Application of SYBR green real-time PCR assay for specific detection of Salmonella spp. in dairy farm environmental samples. International J. Food Microbiol. 102, 161-171 (2005) https://doi.org/10.1016/j.ijfoodmicro.2004.12.020
  36. Novinscak, A., Surette, C. and Filion, M.: Quantification of Salmonella spp. in composted biosolids using a TaqMan qPCR assay. J. Microbiol. Methods 70, 119-126 (2007) https://doi.org/10.1016/j.mimet.2007.03.019
  37. Shannon, K.E., Lee, D.-Y., Trevors, J.T. and Beaudette, L.A.: Application of real-time quantitative PCR for the detection of selected bacterial pathogens during municipal wastewater treatment. Science of the Total Environment 382, 121-129 (2007) https://doi.org/10.1016/j.scitotenv.2007.02.039
  38. Sambrook, J. and Russel, D.W.: Molecular Cloning: A Laboratory Manual, 3rd Ed. Cold Spring Harbor Press, Cold Spring Harbor, NY, USA (2001)
  39. Lim H., Lee, K.H., Hong, C.-H., Bahk, G.-J. and Choi, W.S.: Comparison of four molecular typing methods for the differentiation of Salmonella spp. International J. Food Microbiol. 105, 411-418 (2005) https://doi.org/10.1016/j.ijfoodmicro.2005.03.019
  40. Malorny, B., Hoorfar, J., Bunge, C. and Helmuth, R.:Multicenter validation of the analytical accuracy of Salmonella PCR: towards an international standard. Appl. Environ. Microbiol. 69, 290-296 (2003) https://doi.org/10.1128/AEM.69.1.290-296.2003
  41. Li, Y., Zhuang, S. and Mustapha, A.: Application of a multiplex PCR for the simultaneous detection of Escherichia coli O157:H7, Salmonella and Shigella in raw and ready-to-eat meat products. Meat Science 71, 402-406 (2005) https://doi.org/10.1016/j.meatsci.2005.04.013
  42. Myint, M.S., Johnson, Y.J., Tablante, N.L. and Heckert, R.A.: The effect of pre-enrichment on the sensitivity and specificity and specificity of PCR for detection of naturally contaminated Salmonella in raw poultry compared to conventional culture. Food Microbiol. 23, 599-604 (2006) https://doi.org/10.1016/j.fm.2005.09.002
  43. Nowak, B., von Mffling, T., Chaunchom, S. and Hartung, J.: Salmonella contamination in pigs at slaughter and on the farm: A field study using an antibody ELISA test and a PCR technique. International J. Food Microbiol. 115, 259-267 (2007) https://doi.org/10.1016/j.ijfoodmicro.2006.10.045
  44. Wang, X., Jothikumar, N. and Griffiths, M.W.: Enrichment and DNA extraction protocols for the simultaneous detection of Salmonella and Listeria monocytogenes in raw sausage meat with multiplex real-time PCR. J. Food Prot. 67, 189-192 (2004) https://doi.org/10.4315/0362-028X-67.1.189
  45. Ellingson, J.L.E., Anderson, J.L., and Carlson, S.A. and Sharma, V.K.: Twelve hour real-time PCR technique for the sensitive and specific detection of Salmonella in raw and ready-to0eat meat products. Mol. Cell. Probes 18, 51-57 (2004) https://doi.org/10.1016/j.mcp.2003.09.007
  46. Bhagwat, A.A.: Rapid detection of Salmonella from vegetable rinse-water using real-time PCR. Food Microbiol. 21, 73-78 (2004) https://doi.org/10.1016/S0740-0020(03)00020-0
  47. Farrell, J.J., Doyle, L.J., Addison, R.M., Reller, L.B., Hall, G.S. and Procop, G.W.: Broad-range (Pan) Salmonella and Salmonella serotype typhi-specific real-time PCR assayspotential tools for the clinical microbiologist. Am. J. Clin. Pathol. 123, 339-345 (2005) https://doi.org/10.1309/DP0HY5UT10HQW9YM
  48. Klerks, M.M., Van Bruggen, A.H.C., Zijlstra, C. and Donnikov, M.: Comparison of methods of extraction for Salmonella enterica Serovar enteritidis DNA from environmental substrates and quantification of organism by using a general internal procedural control. Appl. Environ. Microbiol. 72, 3879-3886 (2006) https://doi.org/10.1128/AEM.02266-05
  49. Jacobsen, C.S. and Holben, W.E.: Quantification of mRNA in Salmonella sp. seeded soil and chicken manure using magnetic capture hybridization RT-PCR. J. Microbiol. Methods 69, 315-321 (2007) https://doi.org/10.1016/j.mimet.2007.02.001