DOI QR코드

DOI QR Code

내병성 목초 품종개량을 위한 PR4 유전자의 연구

Studies on a PR4 Gene for Breeding Disease Resistant Forage Crops

  • 차준영 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작연구소, 환경생명과학 국가핵심 연구센터) ;
  • 네리엘마와티 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작연구소, 환경생명과학 국가핵심 연구센터) ;
  • 정민희 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작연구소, 환경생명과학 국가핵심 연구센터) ;
  • 김기용 (농촌진흥청 축산과학원) ;
  • 손대영 (경상대학교 대학원 응용생명과학부, 식물분자생물학 및 유전자조작연구소, 환경생명과학 국가핵심 연구센터)
  • Cha, Joon-Yung (Division of Applied Life Science (BK21 program), PMBBRC, and EBNCRC, Gyeongsang National University) ;
  • Ermawati, Netty (Division of Applied Life Science (BK21 program), PMBBRC, and EBNCRC, Gyeongsang National University) ;
  • Jung, Min-Hee (Division of Applied Life Science (BK21 program), PMBBRC, and EBNCRC, Gyeongsang National University) ;
  • Kim, Ki-Yong (National Institute of Animal Science) ;
  • Son, Dae-Young (Division of Applied Life Science (BK21 program), PMBBRC, and EBNCRC, Gyeongsang National University)
  • 발행 : 2007.12.31

초록

Cytokinin은 식물의 성장과 발달에 중요한 역할을 하는 필수 호르몬이다. mRNA differential display 방법으로 애기장대 amp1 돌연변이체로부터 cytokinin에 의하여 발현이 유도되는 PR4 유전자를 분리하였다. AtPR4로 명명한 애기장대 PR4 유전자는 212개의 아미노산으로 구성되어 있었으며 분자량은 22,900이고 등전점은 7.89로 추정되었다. Genomic DNA 분석결과, AtPR4는 single copy 유전자인 것으로 나타났다. AtPR4의 mRNA는 cytokinin과 NaCl에 의해서는 발현이 유도되었지만 SA와 JA에 의해서는 발현이 억제되었다. PR 단백질은 내병성 등 생체방어기작에 관여하는 것으로 알려져 있다. 따라서 본 연구에서 분리한 애기장대 PR4 유전자는 내병성 목초 품종의 개발에 유용하게 사용될 것으로 사료된다.

Cytokinins are essential plant hormones that play crucial roles in various aspects of plant growth and development. By using mRNA differential display, we isolated a cytokinine-inducible cDNA encoding pathogenesis-related (PR) 4 from Arabidopsis amp1 mutant. The full-length PR4 cDNA, designated AtPR4, contains an open reading frame of 212 amino acids with calculated molecular mass of 22,900 Da and isoelectric point (pI) of 7.89. Genomic DNA blotting showed that the Arabidopsis genome has one copy of AtPR4. AtPR4 mRNA was induced by cytokinin and NaCl, but decreased by SA or JA treatment. PR proteins are induced in response to pathogen attack. Thus the AtPR4 gene isolated in this study may be a useful candidate for genetic engineering of forage crops for increased tolerance against pathogen.

키워드

참고문헌

  1. 김동암, 권찬호, 김병호, 김창주, 김대진, 김문철, 배동호, 서 성, 안계수, 이인덕, 이효원, 전병태, 전우복, 정재록, 조무환, 조진기, 허삼남. 1987. 초지학총론. 선진문화사. 서울. pp. 323-331
  2. Ausubel, F.M., R. Brent, R.E. Kingstone, D.D. Moore, J.G. Seidmanm, J.A. Smith and K. Strohl. 1989. Current protocols in molecular biology. Greene Publishing Associates and Wiley-Interscience, New York, pp. 4.3.1-4.3.4
  3. Bertini, L., A. Cascone, M. Tucci, R. D'Amore, I. Di Berardino, V. Buonocore, C. Caporale and C. Caruso. 2006. Molecular and functional analysis of new mernbers of the wheat PR4 gene family. Biol. Chem. 387:1101-1111 https://doi.org/10.1515/BC.2006.136
  4. Bravo, J.M., S. Campo, I. Murillo, M. Coca and B. San Segundo. 2003. Fungus- and wound-induced accumulation of mRNA containing a class II chitinase of the pathogenesis-related protein 4 (PR-4) family of maize. Plant Mol. Biol. 52:745-759 https://doi.org/10.1023/A:1025016416951
  5. Broekaert, W., H.I. Lee, A. Kush, N.H. Chua and N. Raikhel. 1990. Wound-induced accumulation of mRNA containing a hevein sequence in laticifers of rubber tree (Hevea brasiliensis). Proc. Natl. Acad. Sci. USA 87:7633 - 7637
  6. Caruso, C, L. Bertini, M. Tucci, C. Caporale, M. Nobile, L. Leonardi and V. Buonocore. 2001. Recombinant wheat antifungal PR4 proteins expressed in Escherichia coli. Protein Expr. Purif. 23:380-388 https://doi.org/10.1006/prep.2001.1512
  7. Chaudhury, A.M., S. Letham, S. Craig and E.S. Dennis. 1993. ampl: A mutant with high cytokinin levels and altered embryonic pattern, faster vegetative growth, constitutive photomorphogenesis and precocious flowering. Plant J. 4:907-916 https://doi.org/10.1046/j.1365-313X.1993.04060907.x
  8. Church, G.M. and W. Gilbert. 1984. Genomic sequencing. Proc. Natl. Acad. Sci. USA 81:1991-1995
  9. Friedrich, L., M. Moyer, E. Ward and J. Ryals. 1991. Pathogenesis-related protein 4 is structurally homologous to the carboxy-terminal domains of hevein, Win-1 and Win-2. Mol. Gen. Genet. 230: 113-119 https://doi.org/10.1007/BF00290658
  10. Hemken, R.W., L.S. Bull, J.A. Boling, E. Kane, L.P. Bush and R.C. Buckner. 1979. Summer fescue toxicosis in lactating dairy cows and sheep fed experimental strains of ryegrass-tall fescue hybrids. J. Anim. Sci. 49:641-646 https://doi.org/10.2527/jas1979.493641x
  11. Howell, S.H., S. Lall and P. Che. 2003. Cytokinins and shoot development. Trends Plant Sci. 8:453-459 https://doi.org/10.1016/S1360-1385(03)00191-2
  12. Joosten, M.H., C.J. Bergmans, E,J, Meulenhoff, B.J. Cornelissen and P.J. De Wit. 1990. Purification and serological characterization of three basic 15-kilodalton pathogenesis-related proteins from tomato. Plant Physiol. 94:585-591 https://doi.org/10.1104/pp.94.2.585
  13. Kiba, A., H. Saitoh, M. Nishihara, K. Omiya and S. Yamamura. 2003. C-tenninal domain of a heveinlike protein from Wasabia japonica has potent antimicrobial activity. Plant Cell Physiol. 44:296-303 https://doi.org/10.1093/pcp/pcg035
  14. Murashige, T. and F. Skoog. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiol. Plant. 15:473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  15. Potter, S., S. Uknes, K. Lawton, A.M. Winter, D. Chandler, J. DiMaio, R. Novitzky, E. Ward and J. Ryals. 1993. Regulation of a hevein-like gene in Arabidopsis. Mol. Plant-Microbe Interact. 6:680-685 https://doi.org/10.1094/MPMI-6-680
  16. Reed, K.F.M. 1994. Improved grass cultivars increase milk and meat production-a review. N Z J. Agric. Res. 37:277-286 https://doi.org/10.1080/00288233.1994.9513066
  17. Sambrook, J. and D.W. Russell. 2000. Molecular cloning: A laboratory manual. Ed 3 Cold Spring Harbor Laboratory Press. Cold Spring Harbor. New York
  18. Sano, H., S. Seo, E. Orudgev, S. Youssefian, K. Ishizuka and Y. Ohashi. 1994. Expression of the gene for a small GTP binding protein in transgenic tobacco elevates endogenous cytokinin levels, abnormally induces salicylic acid in response to wounding, and increases resistance to tobacco mosaic virus infection. Proc. Natl. Acad. Sci. USA 91:10556-10560
  19. Schmidt, S.P., C.S. Hoveland, E.M. Clark, N.D. Davis, L.A. Smith, H.W. Grimes and J.L. Holliman. 1982. Association of an endophytic fungus with fescue toxicity in steers fed Kentucky 31 tall fescue seed or hay. J. Anim. Sci. 55: 1259-1263 https://doi.org/10.2527/jas1982.5561259x
  20. Schmidt, S.P., D.A. Danilson, J.A. Holliman, H.W. Grimes and W.B. Webster. 1986. Fescue fungus suppresses growth and reproduction in replacement beef heifers. Highlights Agric. Res. 33:15
  21. Shure, M., S. Wessler and N. Fedoroff. 1983. Molecular identification and isolation of the Waxy locus in maize. Cell 35:225-233 https://doi.org/10.1016/0092-8674(83)90225-8
  22. Stanford, A., M. Bevan and D. Northcote. 1989. Differential expression within a family of novel wound-induced genes in potato. Mol. Gen. Genet. 215:200-208 https://doi.org/10.1007/BF00339718
  23. Svensson, B., I. Svendsen, P. Hojrup, P. Roepstorff, S. Ludvigsen and F.M. Poulsen. 1992. Primary structure of barwin: A barley seed protein closely related to the C-terminal domain of proteins encoded by wound-induced plant genes. Biochemistry 31:8767-8770 https://doi.org/10.1021/bi00152a012
  24. Uknes, S., B. Mauch-Mani, M. Moyer, S. Potter, S. Williams, S. Dincher, D. Chandler, A. Sulsarenko, E. Ward and J. Ryals. 1992. Acquired resistance in Arabidopsis. Plant Cell. 4:645-656 https://doi.org/10.1105/tpc.4.6.645
  25. Yun, D., R.A. Bressan and P.M. Hasegawa. 1997. Plant antifungal proteins. Plant Breed. Rev. 14: 39-88