DOI QR코드

DOI QR Code

Fabrication of an Optical Fiber Amplifier Using Long-period Fiber Gratings Formed by Periodically Arrayed Metal Wire

금속선의 주기적 배열로 유도된 장주기 격자를 이용한 이득 평탄화된 광섬유 증폭기 제작

  • Sohn, Kyung-Rak (Division of Computer, Control and Electronic Communications Engineering, Korea Maritime University) ;
  • Hwang, Woong (Department of Electronic Communications Engineering, Korea Maritime University) ;
  • Shim, June-Hwan (Division of Computer, Control and Electronic Communications Engineering, Korea Maritime University)
  • 손경락 (한국해양대학교 컴퓨터.제어.전자통신공학부) ;
  • 황웅 (한국해양대학교 전자통신공학) ;
  • 심준환 (한국해양대학교 컴퓨터.제어.전자통신공학부)
  • Published : 2007.12.31

Abstract

In this study, we have fabricated a gain flattened erbium-doped optical fiber amplifier. Gain flattening filters were realized by the strain-induced long period fiber gratings, which are made of periodically arrayed metal wires. Using the filter of $550{\mu}m$ period, spontaneous emission amplified at C-band wavelength by a 980nm pumping laser was flattened within 1dB of gain ripple. The performance of the simultaneous multi channel amplification was measured using a fabry-perot laser diode. Amplification ratio was above 20dB. This amplifier can be applied to the long distance transmission system based on a wavelength division multiplexing for boosting an attenuated signal.

본 연구에서는 이득 평탄화된 어븀첨가 광섬유 증폭기를 제작하였다. 이득 평탄화 필터는 주기적으로 배열된 금속선을 이용하여 유도되는 장주기 광섬유 격자로 구현하였다. 980 nm 펌핑 레이저에 의해 증폭된 자발방출 출력 스펙트럼의 C-밴드 파장 영역에서 이득 리플을 제작된 필터를 적용하여 1 dB 이내로 억제하였다. 다중 채널을 동시에 증폭시킬 수 있는 성능은 페브리 페롯 레이저 다이오드를 이용하여 측정하였고 C-밴드에서 20 dB 이상 증폭시킬 수 있음을 보여주었다. 이 증폭기는 파장분할 다중화 방식의 장거리 광 전송에서 다중 채널을 동시에 증폭하는 효과적인 방법을 제공할 것이다.

Keywords

References

  1. Baldwin, C., Chen, P., Kiddy, J., Niemczuk, J., Christiansen, M. Vaithyanathan, K. and Chen, S. (2001), "Structural testing of a Navy LPD-17 propulsion propeller using Bragg grating sensors and digital spatial wavelength domain multiplexing", Proc, of SPIE, vol. 4332, pp. 124-132. https://doi.org/10.1117/12.429649
  2. Becker, P. C., Olsson, N. A. and Simpson, J. R. (1999), "Erbium-doped Fiber Amplifiers-Fundamentals and Technologies", Academic Press.
  3. Borinski, J. W. and Meller, S. A. (2001), "Fiber optic sensors for machine health monitiring", Proc. of SPIE, vol. 4191, pp.55-65. https://doi.org/10.1117/12.417247
  4. Hamdi, M. and Qiao, C. (2003), "Special Issue: Engineering the next-generation optical internet", Optical Networks Magazine, vol. 4, pp. 5-6.
  5. Harumoto, M., Shigehara, M., Suganuma, H. and Suganuma, H. "Gain-flattening filter using long-period fiber gratings, J. Lightwave Technol.," vol. 20, pp. 1027-1033. https://doi.org/10.1109/JLT.2002.1018814
  6. Ishii, Y., Okude, S. Nishide, K. and Wada A. (2001), "Athermalization of wideband EDFA gain profile using a phase-shifted long-period fiber grating, Proc. 27th Eur. Conf. on Opt. Comm., Amsterdam", pp. 82-83.
  7. Lee, C. L. and Lai, Y. (2002), "Evolutionary programming synthesis of optimal long-period fiber grating filters for EDFA gain flattening", IEEE Photon. Technol. Lett., vol. 14, pp. 1557-1599. https://doi.org/10.1109/LPT.2002.803910
  8. Poloso, T.(2001), "Fiber bragg gratings optical sensing technology", Smart Materials Bulletin, september, pp. 7-10.
  9. Sohn, K. R. and Kim, K. T. (2005), "Thermo-optically tunable band-rejection filters usinf mechanically formed long-period fiber gratings", Opt. Lett., vol. 30, pp. 2688-2690. https://doi.org/10.1364/OL.30.002688
  10. Vengsarkar, A. M., Pedrazzani, J. R., Judkins, J. B. and Lemaire, P. J. (1996), "Long-period fiber-grating-based gain equalizers", Opt. Lett., vol. 21, pp. 336-338. https://doi.org/10.1364/OL.21.000336