Effect of shear on poly(styrene-b-isoprene) copolymer micelles

  • Bang, Joon-A (Department of Chemical and Biological Engineering, Korea University) ;
  • Lodge, Timothy P. (Department of Chemical Engineering & Materials Science, and Department of Chemistry, University of Minnesota)
  • 발행 : 2007.12.31

초록

The use of various shearing apparatuses to study the phase behavior of poly(styrene-b-isoprene) diblock copolymer micelles is described. A DMTA rheometer was modified so that one can apply oscillatory shear and obtain the scattering pattern along the shear gradient direction. A cone and plate shear cell was designed to access scattering along the shear vorticity direction, and both oscillatory and steady shear can be applied. The most popular way to employ steady shear on relatively low viscosity fluids is to use a Couette cell, because a high shear rate can be readily achieved without disturbing the sample by overflow. In this work, oscillatory shear was used to obtain a single crystal-like scattering pattern, and thereby to examine the mechanism of the thermotropic transition between face-centered cubic (fcc) and body-centered cubic (bcc) lattices. By applying the steady shear, the response of the fcc lattices to various shear rates is discussed.

키워드

참고문헌

  1. Bang, J. and T. P. Lodge, 2003, Mechanisms and epitaxial relationships between close-packed and bcc lattices in block copolymer solutions, J. Phys. Chem. B 107, 12071-12081 https://doi.org/10.1021/jp035065d
  2. Bang, J. and T. P. Lodge, 2004a, Long-Lived Metastable bcc Phase during Ordering of Micelles, Phys. Rev. Lett. 93, 245701/1-245701/4
  3. Bang, J., T. P. Lodge, X. Wang, K. L. Brinker, and W. R. Burghardt, 2002, Thermoreversible, epitaxial fcc. to bcc. transitions in block copolymer solutions, Phys. Rev. Lett. 89, 215505/1-215505/4
  4. Bang, J., K. Viswanathan, T. P. Lodge, M. J. Park, and K. Char, 2004b, Temperature-dependent micellar structures in poly(styrene-b-isoprene) diblock copolymer solutions near the critical micelle temperature, J. Chem. Phys. 121, 11489-11500 https://doi.org/10.1063/1.1812753
  5. Bassett, W. A. and E. Huang, 1987, Mechanism of the body-centered cubic-hexagonal close-packed phase transition in iron, Science 238, 780
  6. Caputo, F. E., PhD thesis, Northwestern University, 2002
  7. Caputo, F. E., W. R. Burghardt, K. Krishnan, F. S. Bates, and T. P. Lodge, 2002, Time-resolved SAXS measurements of a polymer bicontinuous microemulsion structure factor under shear, Phys. Rev. E 66, 041401
  8. Castelletto, V., I. W. Hamley, P. Holmqvist, C. Rekatas, C. Booth, and J. G. Grossmann, 2001, Small-angle X-ray scattering study of a poly oxyphenylethylene)-poly(oxyethylene) diblock copolymer gel under shear flow, Colloid Polym. Sci. 279, 621
  9. Dahmen, U., 1982, Orientation relationships in precipitation systems, Acta Metall. 30, 63 https://doi.org/10.1016/0001-6160(82)90045-1
  10. Daniel, C., I. W. Hamley, W. Mingvanish, and C. Booth, 2000, Effect of shear on the face-centered cubic phase in a diblock copolymer gel, Macromolecules 33, 2163
  11. Daniel, C., I. W. Hamley, M. Wilhelm, and W. Mingvanish, 2001, Non-linear rheology of a face-centered cubic phase in a diblock copolymer gel, Rheol. Acta 40, 39
  12. Diat, O., G. Porte, and J.-F. Berret, 1996, Orientation and twins separation in a micellar cubic crystal under oscillating shear, Phys. Rev. B 54, 869
  13. Eiser, E., F. Molino, G. Porte, and O. Diat, 2000a, Nonhomogeneous textures and banded flow in a soft cubic phase under shear, Phys. Rev. B 61, 6759 https://doi.org/10.1103/PhysRevE.61.6759
  14. Eiser, E., F. Molino, G. Porte, and X. Pithon, 2000b, Flow in micellar cubic crystals, Rheol. Acta 39, 201 https://doi.org/10.1007/s003970000083
  15. Gotoh, Y. and I. Aral, 1986, Calculation of interfacial energy of the fcc-bcc interface and its epitaxial orientation relationship, Jpn. J. Appl. Phys. 25, L583
  16. Hamley, I. W., K. Mortensen, G. E. Yu, and C. Booth, 1998a, Mesoscopic crystallography: a small-angle neutron scattering study of the body-centered cubic micellar structure formed in a block copolymer gel, Macromolecules 31, 6958-6963 https://doi.org/10.1021/ma9807116
  17. Hamley, I. W., J. A. Pople, C. Booth, L. Derici, M. Imperor-Clerc, and P. Davidson, 1998b, Shear-induced orientation of the body-centered-cubic phase in a diblock copolymer gel, Phys. Rev. E 58, 7620-7628 https://doi.org/10.1103/PhysRevE.58.7620
  18. Hamley, I. W., J. A. Pople, J. P. A. Fairclough, A. J. Ryan, C. Booth, and Y. W. Yang, 1998c, Shear-induced orientational transitions in the body-centered cubic phase of a diblock copolymer gel, Macromolecules 31, 3906-3911 https://doi.org/10.1021/ma971561m
  19. Hamley, I. W., J. A. Pople, J. P. A. Fairclough, N. J. Terrill, A. J. Ryan, C. Booth, G.-E. Yu, O. Diat, K. Almdal, K. Mortensen, and M. Vigild, 1998d, Effect of shear on cibic phases in gels of a diblock copolymer, J. Chem. Phys. 108, 6929
  20. Hanley, K. J., T. P. Lodge, and C.-I. Huang, 2000, Phase behavior of a block copolymer in solvents of varying selectivity, Macromolecules 33, 5918
  21. Headley, T. J. and J. A. Brooks, 2002, A new bcc-fcc orientations relationship observed between ferrite and austenite in solidification structures of steels, Metall. Mater. Trans. A 33A, 5
  22. Lodge, T. P., J. Bang, M. J. Park, and K. Char, 2004, Origin of the thermoreversible fcc-bcc transition in block copolymer solutions, Phys. Rev. Lett. 92, 145501
  23. Lodge, T. P., B. Pudil, and K. J. Hanley, 2002, The full phase behavior for block copolymers in solvents of varying selectivity, Macromolecules 33, 5918 https://doi.org/10.1021/ma000318b
  24. Loose, W. and B. J. Ackerson, 1994, Model calculations for the analysis of scattering data from layered structures, J. Chem. Phys. 101, 7211 https://doi.org/10.1063/1.468278
  25. McConnell, G. A., M. Y. Lin, and A. P. Gast, 1995, Long range order in polymeric micelles under steady shear, Macromolecules 28, 6754 https://doi.org/10.1021/ma00124a009
  26. Molino, F. R., J.-F. Berret, G. Porte, O. Diat, and P. Lindner, 1998, Identification of flow mechnisms for a soft crystal, Eur. Phys. J. B 3, 59
  27. Olsen, G. H. and W. A. Jesser, 1971a, The effect of appolied stress on the f.c.c.-b.c.c. transformation in thin iron films, Acta Metall. 19, 1299
  28. Olsen, G. H. and W. A. Jesser, 1971b, The f.c.c.-b.c.c. transformation in iron deposits on copper, Acta Metall. 19, 1009
  29. Shimizu, K. and Z. Nishiyama, 1972, Electron microscopic studies of martensitic transformations in iron alloys and steels, Metall. Trans. 3, 1055 https://doi.org/10.1007/BF02642437
  30. Wada, M., S. Uda, and M. Kato, 1989, The f.c.c. to b.c.c. transformation in Fe film on a spherical Cu substrate, Phil. Mag. A 59, 31 https://doi.org/10.1080/01418618908220329
  31. Wang, C.-Y. and T. P. Lodge, 2002, Kinetics and mechanisms for the cylinder-to-gyroid transition in a block copolymer solution, Macromolecules 35, 6997
  32. Wentzcovitch, R. M., 1994, hcp-to-bcc pressure-induced transition in Mg simulated by ab initio molecualr dynamics, Phys. Rev. B 50, 10358
  33. Wentzcovitch, R. M. and M. L. Cohen, 1988, Theoretical model for the hcp-bcc transition in Mg, Phys. Rev. B 37, 5571
  34. Wentzcovitch, R. M. and H. Krakauer, 1990, Martensitic transformation of Ca, Phys. Rev. B 42, 4563 https://doi.org/10.1103/PhysRevB.42.4563