Effects of $CO_2$ Enrichment Concentration and Duration on Growth of Bell Pepper (Capsicum annuum L.)

탄산 시비 농도와 시비 시간이 착색단고추 생육에 미치는 영향

  • Kang, Yun-Im (Horticultural Soil Management Team, NHRI, RDA) ;
  • Lee, Si-Young (Protected Horticulture Experiment Station, NHRI, RDA) ;
  • Kim, Hak-Joo (Protected Horticulture Experiment Station, NHRI, RDA) ;
  • Chun, Hee (Protected Horticulture Experiment Station, NHRI, RDA) ;
  • Jeong, Byoung-Ryong (Department of Horticulture, Division of Plant Resources and Environment, Gyeongsang National University)
  • 강윤임 (원예연구소 원예토양관리팀) ;
  • 이시영 (원예연구소 시설원예시험장) ;
  • 김학주 (원예연구소 시설원예시험장) ;
  • 전희 (원예연구소 시설원예시험장) ;
  • 정병룡 (경상대학교 농업생명과학대학)
  • Published : 2007.12.30

Abstract

We investigated effects of concentration and duration were investigated in order to promote efficiency of $CO_2$ enrichment in winter. The treatments were conducted with two levels of $CO_2$ concentration, namely 400 ppm, 700 ppm, two levels of duration, 3 h (9:00-12:00), 6 h (9:00-15:00), and control (nonenrichment $CO_2$). Fresh weight of leaves increased under longer exposure to $CO_2$ and higher $CO_2$ concentration. Fresh weight of stem and root increased under longer exposure to $CO_2$, but decreased under higher $CO_2$ concentration. Total dry weight increased under longer exposure to $CO_2$ and higher $CO_2$ concentration. Combination treatment of longer exposure to $CO_2$ and higher $CO_2$ concentration showed the largest decrease of Root : Shoot dry weight ratio. The $700ppm{\times}6h$ treatment showed higher fruit number and yield than control. The results suggested that the growth under longer exposure to 400 ppm $CO_2$ was better than that under higher $CO_2$ concentration.

본 연구는 착색단고추의 겨울철 시설재배시 탄산가스 시비의 이용효율을 높이기 위한 시비 농도 및 시간을 구명하기 위해 수행하였다. 탄산가스의 공급 설정농도 수준은 400ppm과 700ppm이였으며, 시비 시간은 09:00-12:00(3h)과 09:00-15:00(6h)로 농도와 시간을 조합한 4 수준과 무처리구를 합하여 5 처리를 하였고, 정식 후 55일간 처리하였다. 그 결과 전반적으로 탄산가스 농도가 높고, 시비시간이 길어질수록 전반적인 생육이 증가하였다. 그러나 겨울철에는 광도가 제한 요소로 작용하기 때문에 탄산가스의 높은 농도보다는 시비 시간이 길어질수록 생육이 더 증가하였다. 그러므로 광이 적은 겨울철에는 높은 농도의 이산화탄소를 짧은 시간 시비하는 것보다 낮은 농도로 긴 시간 시비하는 것이 효율적인 것으로 판단된다.

Keywords

References

  1. Aloni, B., L. Karni, Z. Zaidman, and A.A. Schaffer. 1996. Changes of carbohydrates in pepper (Capxicum annuum L.) flowers in relation to their abscission under different shading regimes. Annals of Botany 78:163-168 https://doi.org/10.1006/anbo.1996.0109
  2. Aloni, B., M. Peet, M. Pharr, M. Pharr, and L. Karni. 2001. The effect of high temperature and high atmospheric $CO_2$ on carbohydrate changes in bell pepper (Capsicum annuum) pollen in relation to its germination. Physiologia Plantarum 112:505-512 https://doi.org/10.1034/j.1399-3054.2001.1120407.x
  3. Arp, W.J. 1991. Effects of source-sink relations on photosynthetic acclimation to elevated $CO_2$, Plant, Cell and Environment 14:869-875 https://doi.org/10.1111/j.1365-3040.1991.tb01450.x
  4. Behboudian, M.H. and R. Lar. 1994. Carbon dioxide enrichment in 'Virosa' tomato plant : responses to enrichment duration and to temperature. HortScience 29(12): 1456-1459
  5. Cure, J.D. 1986. Crop responses to carbon dioxide doubling: a literature survey. Agricultural and Forest Meteorology 38:127-145 https://doi.org/10.1016/0168-1923(86)90054-7
  6. Fierro, A., N. Tremblay, and A. Gosselin. 1994. Supplemental carbon dioxide and light improved tomato and pepper seedling growth and yield. HortScience 29(3):152-154
  7. Farrar, J., C. Pollock, and J. Gallagher. 2000. Sucrose and the integration of metabolism in vascular plants. Plant Science 154:1-11 https://doi.org/10.1016/S0168-9452(99)00260-5
  8. Ferris, R. and G. Taylor. 1994. Stomatal characteristics of four native herbs following exposure to elvated $CO_2$. Annuals of Botany 73:447-453 https://doi.org/10.1006/anbo.1994.1055
  9. Ferris, R, M. Sabatti, E. Miglietta, R.E. Mills, and G. Taylor. 2001. Leaf area is stimulated in Populus by free air $CO_2$ enrichment (POPFACE), through increased cell expansion and production. Plant, Cell and Environment 24:305-315 https://doi.org/10.1046/j.1365-3040.2001.00684.x
  10. Grantz, D.A., V. Silva, M. Toyota, and N. Ott. 2003. Ozone increases root respiration but decreases leaf $CO_2$ assimilation in cotton and melon. Journal of Experimental Botany 54:2375-2384 https://doi.org/10.1093/jxb/erg261
  11. Grulke, N.E., H.K. Preisler, C. Rose, J. Kirsch, and L. Balduman. 2002. 03 uptake and drought stress effects on carbon acquisition of ponderosa pine in natural stands. New Phytologist 154:621-631 https://doi.org/10.1046/j.1469-8137.2002.00403.x
  12. Hennessey, L.T. and C.B. Field, 1991. Circadian rhythms in photosynthesis. Plant Physiol. 96:831-836 https://doi.org/10.1104/pp.96.3.831
  13. Islam, S., T. Matsui, and Y. Yoshida. 1996. Effect of carbon dioxide enrichment on physico-chemical and enzymatic changes in tomato fruits at various stages of maturity. Scientia Horticulturae 65:137-149 https://doi.org/10.1016/0304-4238(95)00867-5
  14. Marcelis, L.F.M., E. Heuvelink, L.R. Baan HofmanEijer, J. Den Bakker, and L.B. Xue. 2004. Flower and fruit abortion in sweet pepper in relation to source and sink strength. Journal of Experimental Botany 55:2261-2268 https://doi.org/10.1093/jxb/erh245
  15. Minchin, P.E.H., M.R. Thorpe, J.F. Farrar, and O.A. Koroleva. 2002. Source-sink coupling in young barley plants and control of phloem loading. Journal of Experimental Botany 55:168-1676
  16. Mitchell, R.A.C., J.C. Theobald, M.A.J. Parry, and D.W. Lawlor. 2000. Is there scope for improving balance between RuBP-regeneration and carboxylation capacities in wheat at elevated $CO_2$. Journal of Experimental Botany 51:391-397 https://doi.org/10.1093/jexbot/51.suppl_1.391
  17. Nederhoff, E.M., A.A. Rijsdijk, and R. Graaf. 1992. Leaf conductance and rate of crop transpiration of greenhouse grown sweet pepper (Capsicum annuum L.) as affected by carbon dioxide. Scientia Horticulturae 52:283-301 https://doi.org/10.1016/0304-4238(92)90030-G
  18. Nelson, P.V. 1992. Greenhouse operation and management. 5th ed. Prentice Hall, Upper Saddle River, NJ, USA. p. 375-376
  19. Ranasinghe, S. and G. Taylor. 1996. Mechanism for increased leaf growth in elevated $CO_2$. Journal of Experimental Botany 47(296):349-358 https://doi.org/10.1093/jxb/47.3.349
  20. Reid, C.D. and E.L. Fiscus. 1998. Effects of elevated [$CO_2$] and/or ozone on limitations to $CO_2$ assimilation in soybean (Glycine max). Journal of Experimental Botany 49:885-895 https://doi.org/10.1093/jexbot/49.322.885
  21. Reddy, K.R. and D. Zhao. 2005. Interactive effects of elevated $CO_2$ and potassium deficiency on photosynthesis, growth, and biomass partitioning of cotton. Field Crops Research 94:201-213 https://doi.org/10.1016/j.fcr.2005.01.004
  22. Resh, H.M. 1995. Hydroponic food production: a definitive guidebook of soilless food-growing methods. 5th ed. Woodbridge Press Publishing Company. p. 32-34
  23. Sage, R.E. and R.C. John. 2001. Effects of low atmospheric $CO_2$ on plants : more than a thing of the past. Plant Science 6(1): 18-24 https://doi.org/10.1016/S1360-1385(00)01813-6
  24. Taylor, G, R. Ceulemans, R. Ferris, S.D.L. Gardner, and B.Y. Shao. 2001. Increased leaf area expansion of hybrid poplar in elevated $CO_2$ from controlled environments to open-top chambers and to FACE. Environmental Pollution 115:463-472 https://doi.org/10.1016/S0269-7491(01)00235-4