DOI QR코드

DOI QR Code

Extraction of Pyrophyllite Mineralized Zone using Characteristics of Spectral Reflectance of Rock Samples

암석분광반사율 특성을 이용한 납석 광화대 추출

  • Chi, Kwang-Hoon (Geoscience Information Center, Korea Institute of Geoscience and Mineral Resources (KIGAM)) ;
  • Lee, Hong-Jin (Geoscience Information Center, Korea Institute of Geoscience and Mineral Resources (KIGAM))
  • 지광훈 (한국지질자원연구원 지질자원정보센터) ;
  • 이홍진 (한국지질자원연구원 지질자원정보센터)
  • Published : 2007.12.30

Abstract

In general, it accomplished a spectral reflectance analysis to be, the measurement results appear differently by targets, methods and condition. This paper presents a standard methodology for preprocessing mineral/rock samples and setting the distance from a target to the sensor, and then examines closely the spectral features for pyrophyllite. The size of mineral/rock samples is various according to the condition and scale of outcrop, so it is important to maintain the distance between the sensor and the sample. Before standardization for preprocessing samples and the sensor and sample distance, we prepare various rock samples (Quartz Porphyry) such as natural rock, pebble, powder and cutting rock. For a qualitative analysis to minimize the effect of surface condition of the sample and shadow, we maintains the distance from the sample to the sensor at 30cm and measures three times repeatedly for cutting the sample at $1{\sim}2cm$ thickness. To illustrate the proposed methodology, a case study for pyrophyllite was carried out. In this study, pyrophyllite showed an absorption pattern at wave length of 1.406nm, 1,868nm, 2.180nm and 2.309nm, and a higher grade represented strong absorption at 1.406nm and 2.180 nm. These absorption feature corresponds the band 7 of LANDSAT TM and band 8 of ASTER imageries. So, using these results, pyrophyllite deposits were extracted from other features (such as barren area, concrete area, bed of river, stone pit area etc.).

일반적으로 분광측정을 수행함에 있어서 측정 대상물, 측정 방법, 측정 조건 등에 따라서 측정 결과가 상이하게 나타난다. 본 연구에서는 광물 및 암석 샘플의 전처리, 센서와 대상물과의 거리에 대한 표준화 방법을 제시하고, 납석의 분광특성 연구를 수행하였다. 광물, 암석 샘플의 크기는 노두의 규모와 상태에 따라서 다양하기 때문에 샘플과 센서간의 거리를 일정하게 유지하는 것이 중요하다. 표준화를 수행하기 전에 동일한 암석(석영반암)에 대해서 자연석, 자갈, 분말 그리고 절단암 등 다양한 샘플을 준비하였다. 샘플의 표면 상태와 그림자의 영향을 최소화하고 정량적인 분석을 위하여 센서와 샘플간의 거리를 30cm로 유지하고 $1{\sim}2cm$ 두께의 절단암을 3회 반복 측정하였다. 제안된 방법을 검증하기 위해서 납석에 대한 사례 연구를 수행하였다. 본 연구결과에 따르면 납석은 1.406nm, 1,868nm, 2.180nm 그리고 2.180nm 파장대역에서 강한 흡수 양상을 보이며, 특히 1.406nm와 2.180nm 파장대역에서 강한 흡수가 일어난다. 이러한 흡수 특징은 Landsat TM 영상의 밴드 7과 ASTER 영상의 밴드 8과 일치한다. 따라서, 이러한 결과를 이용하여 육안으로 구분되지 않은 다른 대상물(나지, 주차장, 채석장 등)과 납석 광산을 구분할 수 있다.

Keywords

References

  1. 상기남, 1992. 영남지역 고령토-납석 광상의 성인 연구, 광상학회지, 25: 101-114
  2. 이홍진, 1998. 원격 탐사 자료의 통합 기법을 이용한 의정부-동두천 지역의 지질 판독, 석사학위논문
  3. 智光薰.土屋淸, 1988. 韓國梁山-東萊斷層域變質帶地域の岩石の分光學的特性, 日本リモ-トセンシング學會誌, 8: 5-14
  4. 智光薰.土屋淸, 1993. 岩盤地下水の存在可能域抽出のためのリモ-トセンシングデ-タ處理法に關する硏究, 地學雜誌, 102: 537-548
  5. Goetz, A. F. H. and L. C. Rowan, 1981. Geologic remote sensing, Science, 211: 718-790
  6. Harris, J. R., Rencz, A. N., Ballantyne, B., and Sheridon, C., 1998. Mapping altered rocks using Landsat TM and lithogeochemical data: Sulphurets-Brucejack Lake District, British Columbia, Canada, Photogrammetric Engineering and Remote Sensing, 64: 309-322
  7. Hunt, G. R. and H. P. Ross, 1967. A bidirectional reflectance accessory for spectroscopic measurements. Applied Optics, 6: 1687-1890 https://doi.org/10.1364/AO.6.001687
  8. Hunt, G. R. and J. W. Salisbury, 1970. Visible and near infrared spectra of minerals and rocks - I. Silicate minerals, Modern Geology, pp. 282-300
  9. Hunt, G. R. and J. W. Salisbury, 1971. Visible and near infrared spectra of minerals and rocks - II. Carbonates. Modern Geology, 2: 23-30
  10. Hunt, G. R. and R. P. Ashley, 1979. Spectral of altered rocks in the visible and near infrared. Economic Geology, 74: 1613-1629 https://doi.org/10.2113/gsecongeo.74.7.1613
  11. Iwao, S., 1970. Clay and silicate deposits of volcanic affinity in Japan, Univ. of Tokyo, pp. 267-283
  12. Kaufmann, H., 1988. Mineral exploration along the Aqaba-Levant structure by use of TM-data, International Journal of Remote Sensing, 9: 1639-1658 https://doi.org/10.1080/01431168808954966
  13. Krhon, M. D., 1986. Spectral properties (0.4 to 25microns) of selected rocks associated with disseminated gold and silver deposits in Nevada and Idaho, Geophysical Research, 91: 767-783 https://doi.org/10.1029/JB091iB01p00767
  14. Ramandan, T. M., 2004. Mineralogical and structural characterization of alteration zones detected by orbital remote sensing at Shalatein District, SE Desert, Egypt, African Earth Sciences, 40: 89-99 https://doi.org/10.1016/j.jafrearsci.2004.06.003
  15. Rowan, L. C. et al, 1974. Discrimination of rock types and detection of hydrothermally altered areas in south central Nevada by the use of computer enhanced ERTS images, USGS Prof. Paper, 883: 35
  16. Rowan, L. C. et al, 1977. Discrimination of hydrothermally altered and unaltered rocks in visible and near infrared multispectral images, Geophysics, 42: 522-535 https://doi.org/10.1190/1.1440723
  17. Rowan, L. C. and A. B. Kahle, 1982, Evaluation of 0.46 to 2.36mm multispectral scanner images of the east tintic mining district, Utah, for mapping hydrothermally altered rocks, Economic Geology, 77: 441-452 https://doi.org/10.2113/gsecongeo.77.2.441
  18. Sabins, F. F., 1999. Remote sensing for mineral exploration, Ore Geology Reviews, 14: 157-183 https://doi.org/10.1016/S0169-1368(99)00007-4