Preparation and Characterization of Nanoparticles Using Poly(N-isopropylacrylamide)-$Poly({\varepsilon}-caprolactone)$ and Poly(ethylene glycol)-$Poly({\varepsilon}-caprolactone)$ Block Copolymers with Thermosensitive Function

  • Choi, Chang-Yong (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Jang, Mi-Kyeong (Department of Polymer Science and Engineering, Sunchon National University) ;
  • Nah, Jae-Woon (Department of Polymer Science and Engineering, Sunchon National University)
  • 발행 : 2007.12.31

초록

Thermosensitive nanoparticles were prepared via the self-assembly of two different $poly({\varepsilon}-caprolactone)$-based block copolymers of poly(N-isopropylacrylamide)-b-$poly({\varepsilon}-caprolactone)$ (PNPCL) and poly(ethylene glycol)-b-$poly({\varepsilon}-caprolactone)$ (PEGCL). The self-aggregation and thermosensitive behaviors of the mixed nanoparticles were investigated using $^1H-NMR$, turbidimetry, differential scanning microcalorimetry (micro-DSC), dynamic light scattering (DLS), and fluorescence spectroscopy. The copolymer mixtures (mixed nanoparticles, M1-M5, with different PNPCL content) formed nano-sized self-aggregates in an aqueous environment via the intra- and/or intermolecular association of hydrophobic PCL chains. The microscopic investigation of the mixed nanoparticles showed that the critical aggregation concentration (cac), the partition equilibrium constants $(K_v)$ of pyrene, and the aggregation number of PCL chains per one hydrophobic microdomain varied in accordance with the compositions of the mixed nanoparticles. Furthermore, the PNPCL harboring mixed nanoparticles evidenced phase transition behavior, originated by coil to the globule transition of PNiPAAm block upon heating, thereby resulting in the turbidity change, endothermic heat exchange, and particle size reduction upon heating. The drug release tests showed that the formation of the thermosensitive hydrogel layer enhanced the sustained drug release patterns by functioning as an additional diffusion barrier.

키워드

참고문헌

  1. J. A. Hubbell, Science, 300, 595 (2003) https://doi.org/10.1126/science.1083625
  2. S. Kwon, J. H. Park, H. Chung, I. C. Kwon, S. Y. Jeong, and I. Kim, Langmuir, 19, 10188 (2003) https://doi.org/10.1021/la0350608
  3. K. Kataoka, A. Harada, and Y. Nagasaki, Adv. Drug Deliver. Rev., 47, 113 (2001) https://doi.org/10.1016/S0169-409X(00)00117-4
  4. K. Y. Lee, W. H. Jo, I. C. Kwon, Y. Kim, and S. Y. Jeong, Macromolecules, 31, 378 (1998)
  5. J. S. Hrkach, M. T. Peracchia, A. Domb, N. Lotan, and R. Langer, Biomaterials, 18, 27 (1997)
  6. T. Riley, S. Stolnik, C. R. Heald, C. D. Xiong, M. C. Garnett, L. Illum, S. S. Davis, S. C. Purkiss, R. J. Barlow, and P. R. Gellert, Langmuir, 17, 3168 (2001) https://doi.org/10.1021/la0010572
  7. G. Ruan and S. S. Feng, Biomaterials, 24, 5037 (2003) https://doi.org/10.1016/S0142-9612(03)00419-8
  8. C. Brus, H. Petersen, A. Aigner, F. Caubayko, and T. Kissel, Bioconjug. Chem., 15, 677 (2004) https://doi.org/10.1021/bc034160m
  9. Y. Yamamoto, Y. Nagasaki, Y. Kato, Y. Sugiyama, and K. Kataoka, J. Control. Release, 77, 27 (2001) https://doi.org/10.1016/S0168-3659(01)00444-8
  10. J. P. Xu, J. Ji, W. D. Chen, and J. C. Shen, J. Control. Release, 107, 502 (2005) https://doi.org/10.1016/j.jconrel.2005.06.013
  11. S. S. Venkatraman, P. Jie, F. Min, B. Y. Freddy, and G. Leong- Huat, Int. J. Pharm., 298, 219 (2005) https://doi.org/10.1016/j.ijpharm.2005.03.023
  12. P. Opanasopit, M. Yokoyama, M. Watanabe, K. Kawano, Y. Maitani, and T. Okano, Pharm. Res., 21, 2001 (2004)
  13. F. Zeng, J. Liu, and C. Allen, Biomacromolecules, 5, 1810 (2004) https://doi.org/10.1021/bm049836a
  14. H. Cho, D. Chung, and A. Jeongho, Biomaterials, 25, 3733 (2004) https://doi.org/10.1016/j.biomaterials.2003.09.106
  15. S. Zhou, X. Deng, and H. Yang, Biomaterials, 24, 3563 (2003) https://doi.org/10.1016/S0142-9612(03)00207-2
  16. M. F. Francis, M. Piredda, and F. M. Winnik, J. Control. Release, 93, 55 (2003)
  17. H. S. Yoo, J. E. Lee, H. Chung, I. C. Kwon, and S. Y. Jeong, J. Control. Release, 103, 235 (2005) https://doi.org/10.1016/j.jconrel.2004.11.033
  18. S. W. Jung, Y. I. Jeong, and S. H. Kim, Int. J. Pharm., 254, 109 (2003) https://doi.org/10.1016/S0378-5173(03)00006-1
  19. K. Akiyoshi, S. Kobayashi, S. Shichibe, D. Mix, M. Baudys, S. W. Kim, and J. Sunamoto, J. Control. Release, 54, 313 (1998)
  20. I. C. Kwon, Y. H. Kim, and S. Y. Jeong, Macromolecules, 31, 378 (1998)
  21. K. Kataoka, G. S. Kwon, M. Yokoyama, T. Okano, and Y. Sakurai, J. Control. Release, 24, 119 (1993)
  22. Y. Matsumura and H. Maeda, Cancer Res., 46, 6387 (1986)
  23. G. Kwon, M. Naito, M. Yokoyama, T. Okano, Y. Sakurai, and K. Kataoka, J. Control. Release, 48, 195 (1997)
  24. X. Z. Zhang, F. J. Wang, and C. C. Chu, J. Mater. Sci. Mater. Med., 14, 451 (2003) https://doi.org/10.1023/A:1023219019500
  25. X. Zhang, D. Wu, and C. C. Chu, Biomaterials, 25, 4719 (2004) https://doi.org/10.1016/j.biomaterials.2003.11.040
  26. L. Verestiu, C. Ivanov, E. Barbu, and J. Tsibouklis, Int. J. Pharm., 269, 185 (2004) https://doi.org/10.1016/j.ijpharm.2003.09.031
  27. S. Kim and K. E. Healy, Biomacromolecules, 4, 1214 (2003) https://doi.org/10.1021/bm0340467
  28. K. Makino, J. Hiyoshi, and H. Ohshima, Colloid Surface B, 20, 341 (2001) https://doi.org/10.1016/S0927-7765(00)00149-1
  29. B. Jeong, Y. H. Bae, D. S. Lee, and S. W. Kim, Nature, 388, 860 (1997)
  30. B. Jeong, S. W. Kim, and Y. H. Bae, Adv. Drug Deliver. Rev., 54, 37 ( 2002)
  31. B. Vernon, S. W. Kim, and Y. H. Bae, J. Biomed. Mater. Res., 51, 69 (2000)
  32. D. Neradovic, O. Soga, C. F. Van Nostrum, and W. E. Hennink, Biomaterials, 25, 2409 (2004) https://doi.org/10.1016/j.biomaterials.2003.09.024
  33. F. Kohori, K. Sakai, T. Aoyagi, M. Yokoyama, Y. Sakurai, and T. Okano, J. Control. Release, 55, 87 (1998)
  34. K. Uchida, K. Sakai, E. Ito, O. H. Kwon, A. Kikuchi, M. Yamato, and T. Okano, Biomaterials, 21, 923 (2000)
  35. J. E. Chung, M. Yokoyama, T. Aoyagi, Y. Sakurai, and T. Okano, J. Control. Release, 53, 119 (1998)
  36. J. E. Chung, M. Yokoyama, M. Yamato, T. Aoyagi, Y. Sakurai, and T. Okano, J. Control. Release, 62, 115 (1999)
  37. F. Kohori, K. Sakai, T. Aoyagi, M. Yokoyama, M. Yamato, Y. Sakurai, and T. Okano, Colloid Surface B, 16, 19 (1999)
  38. F. Kohori, M. Yokoyama, K. Sakai, and T. Okano, J. Control. Release, 78, 155 (2002)
  39. S. C. Lee, Y. Chang, J. Yoon, C. Kim, I. C. Kwon, Y. Kim, and S. Y. Jeong, Macromolecules, 32, 1847 (1999)
  40. M. Yuan, Y. Wang, X. Li, C. Xiong, and X. Deng, Macromolecules, 33, 1613 (2000)
  41. G. Zhang, A. Niu, S. Peng, M. Jiang, Y. Tu, M. Li, and C. Wu, Acc. Chem. Res., 34, 249 (2001) https://doi.org/10.1021/ar000113n
  42. A. Albertsson and I. K. Varma, Biomacromolecules, 4, 1466 (2003) https://doi.org/10.1021/bm034247a
  43. B. S. Lele and J.-C. Leroux, Macromolecules, 35, 6714 (2002)
  44. P. L. Soo, L. Luo, D. Maysinger, and A. Eisenberg, Langmuir, 18, 9996 (2002)
  45. A. Harada and K. Kataoka, Macromolecules, 28, 5294 (1995)
  46. A. Harada and K. Kataoka, Macromolecules, 31, 288 (1998)
  47. K. Akiyoshi, S. Deguchi, H. Tajima, T. Nishikawa, and J. Sunamoto, Macromolecules, 30, 857 (1997)
  48. K. Y. Lee, W. H. Jo, I. C. Kwon, Y. Kim, and S. Y. Jeong, Langmuir, 14, 2329 (1998)
  49. S. Kwon, J. H. Park, H. Chung, I. C. Kwon, S. Y. Jeong, and I.-S. Kim, Langmuir, 19, 10188 (2003) https://doi.org/10.1021/la0350608
  50. N. J. Turro and A. Yekta, J. Am. Chem. Soc., 100, 5951 (1978) https://doi.org/10.1021/ja00471a057
  51. C. R. Heald, S. Stolnik, K. S. Kujawinski, C. De Matteis, M. C. Garnett, L. Illum, S. S. Davis, S. C. Purkiss, R. J. Barlow, and P. R. Gellert, Langmuir, 18, 3669 (2002)
  52. E. Alami, M. Almgren, W. Brown, and J. Francois, Macromolecules, 29, 2229 (1996)
  53. S. K. Han, K. Na, and Y. H. Bae, Colloid Surface A, 214, 49 (2003)
  54. M. Wilhelm, C. L. Zhao, Y. Wang, R. Xu, M. A. Winnik, J. L. Mura, G. M. Riess, and D. Croucher, Macromolecules, 24, 1033 (1991)
  55. S. C. Lee, Y. Chang, J. S. Yoon, C. Kim, I. C. Kwon, Y. H. Kim, and S. Y. Jeong, Macromolecules, 32, 1847 (1998)
  56. B. S. Lele and J. C. Leroux, Macromolecules, 35, 6714 (2002) https://doi.org/10.1021/ma011278u