울산지역 퇴적암류의 지질공학적 특성

Engineering Geological Characteristics of Sedimentary Rocks at Ulsan Area

  • 김광식 (한국건설기술연구원 지하구조물연구실) ;
  • 김광염 (한국건설기술연구원 지하구조물연구실) ;
  • 서용석 (충북대학교 지구환경과학과.기초과학연구소) ;
  • 김창용 (한국건설기술연구원 지하구조물연구실)
  • Kim, Kwang-Sik (Underground Structure Div., Korea Institute of Construction Technology(KICT)) ;
  • Kim, Kwang-Yeom (Underground Structure Div., Korea Institute of Construction Technology(KICT)) ;
  • Seo, Yong-Seok (Dept. of Earth & Environmental Sci. & Institute for Basic Science Research, Chungbuk National University) ;
  • Kim, Chang-Yong (Underground Structure Div., Korea Institute of Construction Technology(KICT))
  • 발행 : 2007.12.30

초록

퇴적암에서 발달된 불연속면들은 암반의 공학적 특성들을 결정하는 가장 중요한 인자이다. 이들 불연속면을 기재하는 요소들은 일반적으로 불균질성과 불확실성을 내포하고 있다. 본 연구에서는 이러한 불연속면의 기재요소를 정량적이고 객관적으로 결정하기 위해 확률론적 통계기법을 이용하였다. 울산 일대의 33개의 퇴적암 사면을 선정하여 ISRM(1978)에서 제시한 불연속면의 조사항목을 바탕으로 불연속면의 특성 조사를 수행하였으며, 조사된 항목의 확률분포함수를 분석하여 울산지역 백악기 하양층군 퇴적암류의 지질공학적 특성을 파악하였다.

Discontinuities developed in a sedimentary rock mass are the most important factor to determine mechanical properties of the rock mass. Parameters described discontinuities in rock mass generally connote heterogeneity and uncertainty. In this study, probabilistic statistics method was used to determine parameters of discontinuities quantitatively and objectively. The field survey was conducted at 33 sedimentary rock slopes in Ulsan area, according to the suggested methods for the quantitative description of discontinuities in rock mass(ISRM, 1978). The engineering geological characteristics of the sedimentary rocks at Ulsan area was determined as probability distribution function deduced by analyzing parameters of discontinuities.

키워드

참고문헌

  1. 윤우현, 천병식, 2003, 불연속면의 비선형 전단강도를 이용한 암반사면의 쐐기파괴 확률해석, 한국지반공학회, 19(6), pp.151-160
  2. Attewell, P. B. and Farmer, I. W., 1976, Principles of Engineering Geology, Chapman & Hall, London
  3. Baecher, G. B., 1983, Statistical analysis of rock mass fracturing, Journal of Mathematical Geology, 15(2), pp.33-40
  4. Deere, D. U., 1968), Geological Consideration, Rock Mechanics in Engineering Practice, ed. R. G. Stagg and D. C. Zienkiewicz, Wiley, New York, pp.1-20
  5. Fisher, R. A.,1953, Dispersion on a sphere, Proceedings of the Roal Society of London, U.K. pp.145-155
  6. Fookes, P. G. and Dennes, B.,1969, Observation studies on fissure patterns in cretaceous sediments of south-east England, Geotechnique, 19, pp.453-477 https://doi.org/10.1680/geot.1969.19.4.453
  7. Goodman, R. E., 1976, Methods of geological engineering, West publishing, San Francisco
  8. Hudson, J. A. and Priest, S. D., 1979, Discontinuity spacings in the rock, Int. J. Rock Mech. Min. Sci. Geomech. Abstr., 13, pp.135-148
  9. ISRM, 1978, International Society for Rock Me- chanics, Commission on Standardization of Laboratory and Field Tests. Suggested methods for the quantitative description of discontinuities in rock masses, Int. J.Rock Mech. & Min. Sch. And Geomecha. 15, pp.3
  10. Narr, W., and Suppe, J., 1991, Joint spacing in sedimentary rocks, Journal of Structure Geology, 13(9), pp.1037-1048 https://doi.org/10.1016/0191-8141(91)90055-N
  11. Palmstorm, A., 1982, The volumetric joint count-a useful and simple measure of the degree of rock jointing, Proc. 4th Int. Ass. roc. Eng. Geol., Delhi, 5,pp.15-19
  12. Park, H. J., 2000, Probabilistic approach of stability analysis for rock wedge failure, Econ. Environ. Geol. 33(4), pp.295-307
  13. Piteau, D. R., 1970, Geological factors significant to the stability of slopes cut in rock, In Discontinuity Analysis for Rock Engineering (ed. Priest, S. D.), Chapman Hall, London
  14. Piteau, D. R., 1973, Characterizing and extrapolating rock joint properties in engineering practice. Rock Mechanics Supplement, 2, pp.5-31
  15. Priest, S. D., 1993, Discontinuity analysis for rock engineering, 473p