DOI QR코드

DOI QR Code

Study on the real-time measurement equipment for nanoparticle in low-pressure processes

저압공정 중 발생하는 나노입자 실시간 측정장비에 관한 연구

  • Na, Jeong-Gil (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Cho, Dae-Geun (Advanced Institute Nanotechnology, Sungkyunkwan University) ;
  • Choi, Jae-Boong (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Kim, Young-Gin (School of Mechanical Engineering, Sungkyunkwan University) ;
  • Kim, Tae-Sung (School of Mechanical Engineering, Sungkyunkwan University)
  • 나정길 (성균관대학교 기계공학부) ;
  • 조대근 (성균관대학교 나노과학기술원) ;
  • 최재붕 (성균관대학교 기계공학부) ;
  • 김영진 (성균관대학교 기계공학부) ;
  • 김태성 (성균관대학교 기계공학부)
  • Published : 2007.11.30

Abstract

In this paper, we discussed about the development of the PBMS(Particle Beam Mass Spectrometer) that can measure the nanoparticles on real-time in low-pressure processes. To calibrate this equipment, a DMA(Differential Mobility Analyzer) was used to generate NaCl particles which are charged to +1. Total aerosols flow rate was 1 lpm and 0.086 lpm of that was introduced into the PBMS through the pressure-reducing critical orifice. Transport efficiency through PBMS was 50$\sim$60 % compared to particle current for DMA and PBMS according to the particle size. Results of mesurements are in good agreement with size distributions obtained by DMA.

본 논문에서는 저압환경에서 실시간으로 나노입자를 측정할 수 있는 PBMS(Particle Beam Mass Spectrometer)의 개발에 대해 서술하였다. 개발된 PBMS의 교정을 위해 NaCl입자를 사용하였다. DMA(Differential Mobility Analyzer)를 통해 +1가로 하전된입자를 1 lpm 발생시켜 그 중 0.086 lpm을 PBMS 입구의 오리피스를 통해 분기하여 유입시켰다. DMA와 PBMS의 전류값을 비교하여 전송효율을 측정한 결과 입자의 크기에 따라 약 50$\sim$60%를 나타내었다. 또한 DMA에서 특정한 크기의 입자를 발생시켜 PBMS로 측정하였으며 그 결과는 입자크기별 농도분포와 잘 일치함을 확인할 수 있었다.

Keywords

References

  1. John F. O'Hanlon, J. Vac. Sci. Technol. A, 7(3), 2500-2503 (1989) https://doi.org/10.1116/1.575885
  2. 윤주영, 성대진, 신용현, 이지훈, 문두경, 강상우, 한국진공학회지, 15(4), 421-426 (2006)
  3. 윤주영, 신용현, 정광화, 한국진공학회지, 14(3), 110-114 (2005)
  4. International Technology Roadmap for Semiconductors (ITRS), (2005)
  5. Liu, P., et al., J. Aerosol. Sci. Technol., 22(3), 293-313, (1995) https://doi.org/10.1080/02786829408959748
  6. Liu, P., et al., J. Aerosol. Sci. Technol., 22(3), 314-324, (1995) https://doi.org/10.1080/02786829408959749
  7. Ziemann, P. J., et al., J. Aerosol. Sci., 26(5), 745-756, (1995) https://doi.org/10.1016/0021-8502(95)00009-2
  8. Nijhawan, S., P. H. McMurry, S. A. Cambell, J. Vac. Sci. Technol. A, 18(5), 2198-2206, (2000) https://doi.org/10.1116/1.1288193
  9. Friedlander, S. K., Smoke, dust, and haze: Fundamentals of aerosol behavior, 2nd ed. ( Wiley Press, New York, 2000), xvii. 317
  10. Nijhawan, S., Mechanical Engineering in University of Minnesota, (1999)