Poly(ethylene terephthalate) Nanocomposite Fibers with Thermally Stable Organoclays

내열성 유기화 점토를 이용한 폴리(에틸렌 테레프탈레이트) 나노복합체 섬유

  • Jung, Min-Hye (Department of Polymer Science and Engineering, Kumoh National Institute of Technology) ;
  • Chang, Jin-Hae (Department of Polymer Science and Engineering, Kumoh National Institute of Technology)
  • 정민혜 (금오공과대학교 고분자공학과) ;
  • 장진해 (금오공과대학교 고분자공학과)
  • Published : 2007.11.30

Abstract

The thermomechanical properties and morphologies of nanocomposite fibers of poly(ethylene terephthalate)(PET) incorporating thermally stable organoclays are compared. Dodecyltriphenyl-phosphonium-mica($C_{12}PPh-Mica$) and 1-hexadecane benzimidazole-mica ($C_{16}BIMD-Mica$) were used as reinforcing fillers in the fabrication of PET hybrid fibers. Dispersions of organoclays with PET were studied by using the in-situ polymerization method at various organoclay contents to produce nano-scale composites. The thermo-mechanical properties and morphologies of the PET hybrid fibers were determined using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), wide angle X-ray diffraction (XRD), electron microscopy (SEM and TEM), and a universal tensile machine (UTM). Transmission electron microscopy (TEM) micrographs show that some of the clay layers are dispersed homogeneously within the polymer matrix on the nano-scale, although some clay particles are agglomerated. We also found that the addition of only a small amount of organoclay is enough to improve the thermal stabilities and mechanical properties of the PET nanocomposite fibers. Even polymers with low organoclay content (<5 wt%) were found to exhibit much higher thermo-mechanical values than pure PET fibers.

내열성 유기화 점토를 사용하여 얻은 폴리(에틸렌 테레프탈레이트)(PET) 나노복합체 섬유들의 열적, 기계적 성질 및 모폴로지를 서로 비교하였다. PET 나노복합체 섬유에는 도데실트리페닐포스포늄-마이카($C_{12}PPh-Mica$)와 1-헥사데칸벤즈이미다졸-마이카($C_{16}BIMD-Mica$) 등의 유기화 점토가 사용되었다. In-situ 중합법을 이용하여 PET에 다양한 농도의 유기화 점토가 나노 크기로 분산된 복합재료를 합성하였다. PET 나노복합체 섬유의 열적-기계적 성질을 측정하기 위해 시차 주사 열분석기(DSC)와 열 중량 분석기(TGA), 넓은 각 X-선 회절 분석기(WAXD), 전자현미경(SEM과 TEM) 그리고 만능 인장 시험기(UTM)를 이용하였다. 전자현미경으로 관찰된 나노복합체 섬유 중 점토의 일부는 나노 크기로 잘 분산되었으나 한편으로는 뭉쳐진 형태도 보였다. 본 연구로부터 소량의 유기화 점토의 첨가가 나노복합체 섬유의 열 안정성과 기계적 성질을 증가시키는데 크게 기여하였음을 알았고, 5 wt% 이하의 소량의 유기화 점토를 이용한 복합재료의 열적 기계적 성질은 순수한 PET 섬유보다도 더 높은 값을 보여주었다.

Keywords

References

  1. R. H. Vora, P. K. Pallathadka, S. H. Goh, T.-S. Chung, Y. X. Lim, and T. K. Bang, Macromol. Mater. Eng., 288, 337 (2003) https://doi.org/10.1002/mame.200390027
  2. C. S. Triantafillidis, P. C. LeBaron, and T. J. Pinnavaia, Chem. Mater., 14, 4088 (2002)
  3. M. Pramanik, S. K. Srivastava, B. K. Samantarray, and A. K. Bhowrnick, J. Polym. Sci.; Part B: Polym. Phys., 40, 2065 (2002)
  4. Y. Kim, W. H. Goh, T. Chang, C.-S. Ha, and M. Ree, Adv. Eng. Meter., 6, 39 (2004) https://doi.org/10.1002/adem.200300546
  5. C.-M. Leu, Z.-W. Wu, and K-H. Wei, Chem. Mster., 14, 3016 (2002)
  6. J. H. Chang, D. K. Park, and K. J. Ihn, J. Appl. Polym. Sci., 84, 2294 (2002)
  7. H. - L. Tyan, C. - M. Leu, and K. - H. Wei, Chem. Mster., 13, 222 (2001)
  8. H.-L. Tyan, C.-Y. Wu, and K-H. Wei, J. Appl. Polym. Sci, 81, 1742 (2001)
  9. R. A. Vaia and E. P. Giannelis, Macromolecules, 30, 7990 (1997)
  10. R. A. Vaia and E. P. Giannelis, Macromolecules, 30, 8000 (1997)
  11. A. C. Balazs, C. Singh, and E. Zhulina, Macromolecules, 31, 8370 (1998)
  12. T. J. Pinnavaia and G. W. Beall, Polymer-Clay Nanocomposites, John Wiley & Sons, West Sussex, 2000
  13. J.-H. Chang, S. J. Kim, and S. Im, Polymer, 45, 5171 (2004) https://doi.org/10.1016/j.polymer.2004.05.012
  14. M.-H. Jung, J.-H. Chang, and J.-C. Kim, Polym. Eng. Sci., in press (2007)
  15. J.-H. Chang and Y. U. An, J. Polym. Sci.; Part B: Polym. Phys., 40, 670 (2002)
  16. S. H. Hsiao, G. S. Liou, and L. M. Chang, J. Appl. Polym. Sci., 80, 2067 (2001) https://doi.org/10.1002/1097-4628(20010404)80:1<1::AID-APP1067>3.0.CO;2-Z
  17. Y. Ke, J. Lu, X. Vi, J. Zhao, and Z. Qi, J. Appl. Polym. Sci, 78, 808 (2000)
  18. A. B. Morgan and J. W. Gilman, J. Appl. Polym. Sci., 87, 808 (2003)
  19. C. H. Davis, L. J. Mathias, J. W. Gilman, D. A. Schiraldi, J. R. Shields, P. Trulove, T. E. Sutto, and H. C. Delong, J. Polym. Sci.; Part B: Polym. Phys., 40, 2661 (2002)
  20. G. Calgali, C. Ramesh, and A. Lele, Macromolecules, 34, 852 (2001) https://doi.org/10.1021/ma002404h
  21. R. A. Vaia, K D. Jandt, E. J. Kramer, and E. P. Giannelis, Chem. Mater., 8, 2628 (1996)
  22. X. Li, T. Kang, W.-J. Jo, J.-K Lee, and C.-S. Ha, Macromol. Rapid Commum., 22, 1306 (2001)
  23. J.-H. Chang, B. S. Seo, and D. H. Hwang, Polymer, 43, 2969 (2002)
  24. H. Xu, S.-W. Kuo, J.-S. Lee, and F.-C. Chang. Macromolecules, 35, 8788 (2002)
  25. T. D. Fornes, P. J. Yoon, D. L. Hunter, H. Keskkula, and D. R. Paul, Polymer, 43, 5915 (2002)
  26. Z. Wang, T. Lan, and T. J. Pinnavaia, Chem. Mater., 8, 2200 (1996)
  27. A. Akelah and A. Moet, J. Mater. Sci., 31, 3589 (1996)
  28. A. Okada and A. Usuki, Mater. Sci. Eng., C3, 109 (1995)
  29. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, T. Kurauchi, and O. Karnigaito, J. Polym. Sci.: Part A: Polym. Chem., 31, 1755 (1993)
  30. J.-H. Chang, Y. U. An, S. J. Kim, and S. Im, Polymer, 44, 5655 (2003) https://doi.org/10.1016/S0032-3861(03)00613-X
  31. L. Chen and S.-C. Wong, J. Appl. Polym. Sci., 88, 3298 (2003) https://doi.org/10.1002/app.12153
  32. Y. Kojima, A. Usuki, M. Kawasumi, A. Okada, Y. Fukushima, T. Kurauchi, and O. Kamigaito, J. Mater. Res., 8, 1185 (1993)