방사선 중합법에 의한 Kapok 이온교환 섬유의 합성

Preparation of Son Exchange Kapok Fiber by Radiation Polymerization

  • 조인희 (충남대학교 바이오응용화학부) ;
  • 강필현 (한국원자력연구원 정읍 방사선과학연구소 방사선공업환경연구센터) ;
  • 임윤묵 (한국원자력연구원 정읍 방사선과학연구소 방사선공업환경연구센터) ;
  • 최재학 (한국원자력연구원 정읍 방사선과학연구소 방사선공업환경연구센터) ;
  • 황택성 (충남대학교 바이오응용화학부) ;
  • 노영창 (한국원자력연구원 정읍 방사선과학연구소 방사선공업환경연구센터)
  • Cho, In-Hee (School of Applied Chemistry and Biological Engineering, College of Engineering, Chungnam National University) ;
  • Kang, Phil-Hyun (Radiation Research Center for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Lim, Youn-Mook (Radiation Research Center for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Choi, Jae-Hak (Radiation Research Center for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute) ;
  • Hwang, Taek-Sung (School of Applied Chemistry and Biological Engineering, College of Engineering, Chungnam National University) ;
  • Nho, Young-Chang (Radiation Research Center for Industry & Environment, Advanced Radiation Technology Institute, Korea Atomic Energy Research Institute)
  • 발행 : 2007.11.30

초록

[ $Co_{60}\;{\gamma}-ray$ ] 방사선 조사법을 이용하여 kapok 섬유에 styrene, glycidylmethacrylate(GMA) 또는 acrylic acid(AAc)를 그래프트 공중합 반응하여 합성한 공중합체의 그래프트율은 단량체의 농도와 방사선 조사량에 따라 증가하는 것으로 나타났으며, 또한 합성된 이온교환 섬유의 도입된 관능기를 확인하고 이온교환 능을 측정하였으며, SEM과 FT-IR을 통하여 이온교환 섬유의 표면과 구조를 분석하였다.

The grafting of styrene, glycidylmethacrylate (GMA) or acrylic acid (AAc) onto kapok fiber were performed by $Co_{60}\;{\gamma}-ray$ radiation-induced graft copolymerization. Degree of grafting (DG) of copolymers were increased with increasing monomer concentration and radiation dose. In addition to we confirmed the introduced functional group and measured ion exchange capacity. Morphology of the ion exchange fibers and their structures were analyzed by SEM and FT-IR.

키워드

참고문헌

  1. T. Yoshizawa, et el, Proceedings of the 11th Annual Tech., Meeting on Air Cleaning and Contamionation Control, pp.165 -168, April 21-22 (1992)
  2. K. W. Baek, I. H. Cho, Y. C. Nho, and T. S. Hwang. Polymer (Korea), 30, 525 (2006)
  3. J. Chen, L. Yang, M. Wu, Q. Xi, S. He, Y. Li, and Y. C. Nho, Radiat. Phys. Chem., 59, 313 (2000)
  4. T. Kawai, K. Saito, K. Sugita, T. Kawakami, J. J. Kanno, A. Katakaic, N. Seko, and T. Sugo, Radist. Phys. Chem., 59 , 405 (2000)
  5. I. H. Cho, N. S. Kwak, P. H. Kang, Y. C. Nho, and T. S. Hwang, Polymer (Koree), 30, 217 (2006)
  6. N. Kabay, A. Katakai, and T. Sugo, Radiat. Phys. Chem., 46, 883 (1995) https://doi.org/10.1016/0969-806X(95)00308-K
  7. M. Ulbricht, React. Funct. Polym., 31, 165 (1996)
  8. H. Ma, R. H. Davis, and C. N. Bowman, Polymer, 42, 8333 (2001) https://doi.org/10.1016/S0032-3861(00)00352-9
  9. H. Borcherding, H. G. Hiche, D. Jorcke, and M. Ulbricht, Desalination, 149, 297 (2002)
  10. J. S. Park and Y. C. Nho, Polymer(Korea), 22, 47 (1998)
  11. I. H. Cho, K. W. Baek, C. S. Lee, Y. C. Nho, S. K. Yoon, and T. S. Hwang, Polymer(Koree), 31, 1 (2007)
  12. E. Trommsdroff, H. Kohle, and P. Lagally, Macromol Chem., 1,169 (1948)
  13. T. S. Hwang, J. H. Lee, and M. J. Lee, Polymer(Koree), 25, 451(2001)