Preparation of Hybrid Cation Ion Exchange Fibers by Web Spray and Their Adsorption Properties for Ammonia Gas

Web Spray 법을 이용한 복합 양이온교환섬유의 제조 및 암모니아 흡착특성

  • Park, Seong-Wook (Department of Chemical & Biological Engineering, College of Engineering, Chungnam National University) ;
  • Lee, Hoo-Kun (Kael Co. Ltd.) ;
  • Rhee, Young-Woo (Department of Chemical & Biological Engineering, College of Engineering, Chungnam National University) ;
  • Jung, Boo-Young (Korea Institute of Footwear & Learther Technology) ;
  • Hwang, Taek-Sung (Department of Chemical & Biological Engineering, College of Engineering, Chungnam National University)
  • Published : 2007.11.30

Abstract

In this study, the hybrid ion exchange fibers (HIEF) were prepared by using web spraying muthod with hot melt adhesive. Characteristics of HIEF and their adsorption properties for ammonia gas were investigated. The ion exchange capacity (IEC) of HIEF was increased with increasing the resin contents and their values were higher than those of pure resin and ion exchange fabrics. The removal efficiency for ammonia gas increased with an increase in packing density of hybrid ion exchange fabrics in the column. The adsorption breakthrough time was 270 min, which was slower than those of the resin and fibers. The maximum value of adsorption for ammonia gas was 94%. The breakthrough time was also increased with increasing the concentration and flow rate of ammonia gas. The reaction constant(k) for ammonia gas was increased with increasing the concentration and flow rate of the gas, while it was decreased an the mass was increased.

본 연구는 점착제 분사방식으로 고성능 hybrid ion exchange fiber(HIEF)를 제조하고 이들의 암모니아 흡착성능 및 기본물성을 측정하였다. HIEF의 이온교환용량은 수지 부착량이 증가함에 따라 증가하였으며 단일 수지와 이온교환섬유의 이온교환용량보다 크게 나타났다. 또한 암모니아의 제거율은 HIEF의 충전밀도가 증가할수록 증가하였으며 흡착 파과시간은 270분으로 섬유나 수지에 비해 길게 나타났고 최대 암모니아 흡착량은 94%이었다. 또한 암모니아 흡착 파과시간은 유량 및 농도가 증가함에 따라 빠르게 진행되었다. 암모니아 반응속도 상수(k)는 유입되는 가스농도의 증가에 따라 증가하였으며, 질량이 증가할수록 감소하였으며 가스 유속이 증가할수록 반응속도 상수(k)가 증가하였다.

Keywords

References

  1. J. Fritsch, O. F. Sankey, K. E. Schmidt, and J. B. Page, Surf. Sci, 427, 298 (1999) https://doi.org/10.1016/S0039-6028(99)00293-9
  2. M. Sasaki, S. Sugawara, and S. Yamamoto, Surf. Sci., 433, 811 (1999) https://doi.org/10.1016/S0039-6028(99)00491-4
  3. Y. C. Nho, J. L. Garnett, and P. A. Dworganyn, J. Polym. Sci., 31,163 (1993)
  4. J. S. Park, Y. C. Nho, and T. S. Hwang, Polymer(Koree), 21, 701 (1997)
  5. J. S. Park, Y. C. Nho, and J. H. Jin, Polymer(Korea), 22, 39 (1998)
  6. J. S. Park and Y. C. Nho, Polymer (Korea), 22, 47 (1998)
  7. J. Netting, Nature, 406, 928 (2000) https://doi.org/10.1038/35023319
  8. K. H. Kim, Atmos. Environ., 39, 2235 (2005) https://doi.org/10.1016/j.atmosenv.2004.12.039
  9. K. Sugasaka, S. Katoh, N. Taki, A. Takahashi, and Y. Umezawa, Sep. Sci. Technol, 18, 4, 307 (1983) https://doi.org/10.1080/01496398308068568
  10. V. S. Soldatov, G. I. Sergeev, and R. V. Martsinkevich, Dock. Akad Nauk, USSR, 28, 1009 (1984)
  11. V. S. Soldatov, Izvest Acad, and Nauk BSSR, Chem. Ser., 6, 39 (1982)
  12. J. S. Kim, H. K. Park, S. D. Kim, H. S. Yu, and K. I. Rhee, J. Kor. Inst. of Met. & Mater., 30, 600 (1992)
  13. C. S. Shin and T. H. Lee, J. Kor. Inst. Chem. Eng., 27, 588 (1989)
  14. T. Kawai, K. Saito, K. Sugita, T. Kawakami, J. Kanno, A. Katakai, N. Seko, and T. Sugo, Radi. Pbys. Chem., 59, 405 (2000) https://doi.org/10.1016/S0969-806X(00)00298-X
  15. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918) https://doi.org/10.1021/ja02242a004
  16. J. M. Smith, Chemical Engineering Kinetics, McGraw-Hill, New York, p.132 (1981)
  17. I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918) https://doi.org/10.1021/ja02242a004
  18. H. Freundlich, Colloid and Capillary Chemistry, Methuen, London, p.198 (1926)