References
- J. Aczel and J. Dhombres, Functional equations in several variables, Cambridge University Press, Cambridge, 1989
- D. Amir, Characterizations of inner product spaces, Birkhauser Verlag, Basel, 1986
- C. Baak, Cauchy-Rassias stability of Cauchy-Jensen additive mappings in Banach spaces, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 6, 1789-1796 https://doi.org/10.1007/s10114-005-0697-z
- J. Baker, The stability of the cosine equation, Proc. Amer. Math. Soc. 80 (1980), no. 3, 411-416 https://doi.org/10.1090/S0002-9939-1980-0580995-3
- Y. Benyamini and J. Lindenstrauss, Geometric nonlinear functional analysis. Vol. 1, American Mathematical Society Colloquium Publications, 48. American Mathematical Society, Providence, RI, 2000
- P. W. Cholewa, Remarks on the stability of functional equations, Aequationes Math. 27 (1984), no. 1-2, 76-86 https://doi.org/10.1007/BF02192660
- S. Czerwik, On the stability of the quadratic mapping in normed spaces, Abh. Math. Sem. Univ. Hamburg 62 (1992), 59-64 https://doi.org/10.1007/BF02941618
- P. Gavruta, A generalization of the Hyers-Ulam-Rassias stability of approximately ad- ditive mappings, J. Math. Anal. Appl. 184 (1994), no. 3, 431-436 https://doi.org/10.1006/jmaa.1994.1211
- A. Grabiec, The generalized Hyers-Ulam stability of a class of functional equations, Publ. Math. Debrecen 48 (1996), no. 3-4, 217-235
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U. S. A. 27 (1941), 222-224 https://doi.org/10.1073/pnas.27.4.222
- D. H. Hyers, G. Isac, and Th. M. Rassias, Stability of functional equations in sev- eral variables, Progress in Nonlinear Differential Equations and their Applications, 34, Birkhauser, Basel, 1998
- D. H. Hyers, G. Isac, and Th. M. Rassias, On the asymptoticity aspect of Hyers-Ulam stability of mappings, Proc. Amer. Math. Soc. 126 (1998), no. 2, 425-430 https://doi.org/10.1090/S0002-9939-98-04060-X
- D. H. Hyers and Th. M. Rassias, Approximate homomorphisms, Aequationes Math. 44 (1992), no. 2-3, 125-153 https://doi.org/10.1007/BF01830975
- P. Jordan and J. von Neumann, On inner products in linear, metric spaces, Ann. of Math. (2) 36 (1935), no. 3, 719-723 https://doi.org/10.2307/1968653
- K. Jun and H. Kim, Remarks on the stability of additive functional equation, Bull. Korean Math. Soc. 38 (2001), no. 4, 679-687
- K. Jun and H. Kim, The generalized Hyers-Ulam-Rassias stability of a cubic functional equation, J. Math. Anal. Appl. 274 (2002), no. 2, 267-278 https://doi.org/10.1016/S0022-247X(02)00415-8
- K. Jun and H. Kim, Stability problem for Jensen-type functional equations of cubic mappings, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 6, 1781-1788 https://doi.org/10.1007/s10114-005-0736-9
- K. Jun and Y. Lee, On the Hyers-Ulam-Rassias stability of a Pexiderized quadratic inequality, Math. Inequal. Appl. 4 (2001), no. 1, 93-118
- S.-M. Jung, On the Hyers-Ulam stability of the functional equations that have the qua- dratic property, J. Math. Anal. Appl. 222 (1998), no. 1, 126-137 https://doi.org/10.1006/jmaa.1998.5916
- S.-M. Jung, On the Hyers-Ulam-Rassias stability of a quadratic functional equation, J. Math. Anal. Appl. 232 (1999), no. 2, 384-393 https://doi.org/10.1006/jmaa.1999.6282
- S.-M. Jung, Stability of the quadratic equation of Pexider type, Abh. Math. Sem. Univ. Hamburg 70 (2000), 175-190 https://doi.org/10.1007/BF02940912
- P. Kannappan, Quadratic functional equation and inner product spaces, Results Math. 27 (1995), no. 3-4, 368-372 https://doi.org/10.1007/BF03322841
- A. Najati and C. Park, On the Stability of a Cubic Functional Equation, to appear in the Acta Math. Sinica (English Series)
-
C. Park, Universal Jensen's equations in Banach modules over a
$C^*$ -algebra and its unitary group, Acta Math. Sin. (Engl. Ser.) 20 (2004), no. 6, 1047-1056 https://doi.org/10.1007/s10114-004-0409-0 -
C. Park, J. Hou, and S. Oh, Homomorphisms between
$JC^*$ -algebras and Lie$C^*$ -algebras, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 6, 1391-1398 https://doi.org/10.1007/s10114-005-0629-y -
C. Park and Th. M. Rassias, The N-isometric isomorphisms in linear N-normed
$C^*$ - algebras, Acta Math. Sin. (Engl. Ser.) 22 (2006), no. 6, 1863-1890 https://doi.org/10.1007/s10114-005-0878-9 - K.-H. Park and Y.-S. Jung, Stability of a cubic functional equation on groups, Bull. Korean Math. Soc. 41 (2004), no. 2, 347-357 https://doi.org/10.4134/BKMS.2004.41.2.347
- Th. M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297-300 https://doi.org/10.1090/S0002-9939-1978-0507327-1
- Th. M. Rassias, On the stability of functional equations in Banach spaces, J. Math. Anal. Appl. 251 (2000), no. 1, 264-284 https://doi.org/10.1006/jmaa.2000.7046
- S. Rolewicz, Metric linear spaces, Second edition. PWN-Polish Scientific Publishers, Warsaw; D. Reidel Publishing Co., Dordrecht, 1984
- P. K. Sahoo, A generalized cubic functional equation, Acta Math. Sin. (Engl. Ser.) 21 (2005), no. 5, 1159-1166 https://doi.org/10.1007/s10114-005-0551-3
- F. Skof, Local properties and approximation of operators, Rend. Sem. Mat. Fis. Milano 53 (1983), 113-129 https://doi.org/10.1007/BF02924890
- S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8 Interscience Publishers, New York-London, 1960
Cited by
- Stability of Pexiderized quadratic functional equation in intuitionistic fuzzy normed space vol.235, pp.8, 2011, https://doi.org/10.1016/j.cam.2010.10.010
- Approximately Quintic and Sextic Mappings Formr-Divisible Groups into Ŝerstnev Probabilistic Banach Spaces: Fixed Point Method vol.2011, 2011, https://doi.org/10.1155/2011/572062
- APPROXIMATION OF CUBIC MAPPINGS WITH n-VARIABLES IN β-NORMED LEFT BANACH MODULE ON BANACH ALGEBRAS vol.48, pp.5, 2011, https://doi.org/10.4134/BKMS.2011.48.5.1063
- Approximate Cubic Lie Derivations vol.2013, 2013, https://doi.org/10.1155/2013/425784
- A Fixed Point Approach to Stability of Quintic Functional Equations in Modular Spaces vol.55, pp.2, 2015, https://doi.org/10.5666/KMJ.2015.55.2.313
- Homomorphisms in quasi-Banach algebras associated with a Pexiderized Cauchy-Jensen functional equation vol.25, pp.9, 2009, https://doi.org/10.1007/s10114-009-7648-z
- The generalized cubic functional equation and the stability of cubic Jordan $$*$$ ∗ -derivations vol.59, pp.2, 2013, https://doi.org/10.1007/s11565-013-0185-9
- AQCQ-Functional Equation in Non-Archimedean Normed Spaces vol.2010, 2010, https://doi.org/10.1155/2010/741942
- On Approximate Additive–Quartic and Quadratic–Cubic Functional Equations in Two Variables on Abelian Groups vol.58, pp.1-2, 2010, https://doi.org/10.1007/s00025-010-0018-4
- The Hyers-Ulam stability of a functional equation deriving from quadratic and cubic functions in quasi-β-normed spaces vol.26, pp.12, 2010, https://doi.org/10.1007/s10114-010-9330-x
- APPROXIMATELY QUINTIC AND SEXTIC MAPPINGS ON THE PROBABILISTIC NORMED SPACES vol.49, pp.2, 2012, https://doi.org/10.4134/BKMS.2012.49.2.339
- Cubic derivations on Banach algebras vol.38, pp.4, 2013, https://doi.org/10.1007/s40306-013-0031-2