DOI QR코드

DOI QR Code

ON II-ARMENDARIZ RINGS

  • Huh, Chan (DEPARTMENT OF MATHEMATICS BUSAN NATIONAL UNIVERSITY) ;
  • Lee, Chang-Ik (DEPARTMENT OF MATHEMATICS BUSAN NATIONAL UNIVERSITY) ;
  • Park, Kwang-Sug (DEPARTMENT OF MATHEMATICS BUSAN NATIONAL UNIVERSITY) ;
  • Ryu, Sung-Ju (DEPARTMENT OF MATHEMATICS BUSAN NATIONAL UNIVERSITY)
  • Published : 2007.11.30

Abstract

We in this note introduce a concept, so called ${\pi}-Armendariz$ ring, that is a generalization of both Armendariz rings and 2-primal rings. We first observe the basic properties of ${\pi}-Armendariz$ rings, constructing typical examples. We next extend the class of ${\pi}-Armendariz$ rings, through various ring extensions.

Keywords

References

  1. D. D. Anderson and V. Camillo, Armendariz rings and Gaussian rings, Comm. Algebra 26 (1998), no. 7, 2265-2272 https://doi.org/10.1080/00927879808826274
  2. E. P. Armendariz, A note on extensions of Baer and P.P.-rings, J. Austral. Math. Soc. 18 (1974), 470-473 https://doi.org/10.1017/S1446788700029190
  3. G. F. Birkenmeier, H. E. Heatherly, and E. K. Lee, Completely prime ideals and as- sociated radicals, Ring theory (Granville, OH, 1992), 102-129, World Sci. Publ., River Edge, NJ, 1993
  4. G. F. Birkenmeier, J. Y. Kim, and J. K. Park, Regularity conditions and the simplicity of prime factor rings, J. Pure Appl. Algebra 115 (1997), no. 3, 213-230 https://doi.org/10.1016/S0022-4049(96)00011-4
  5. Y. Hirano, On annihilator ideals of a polynomial ring over a noncommutative ring, J. Pure Appl. Algebra 168 (2002), no. 1, 45-52 https://doi.org/10.1016/S0022-4049(01)00053-6
  6. C. Huh, Y. Lee, and A. Smoktunowicz, Armendariz rings and semicommutative rings, Comm. Algebra 30 (2002), no. 2, 751-761 https://doi.org/10.1081/AGB-120013179
  7. N. K. Kim and Y. Lee, Armendariz rings and reduced rings, J. Algebra 223 (2000), no. 2, 477-488 https://doi.org/10.1006/jabr.1999.8017
  8. T.-K. Lee and T.-L. Wong, On Armendariz rings, Houston J. Math. 29 (2003), no. 3, 583-593
  9. G. Marks, On 2-primal Ore extensions, Comm. Algebra 29 (2001), no. 5, 2113-2123 https://doi.org/10.1081/AGB-100002173
  10. G. Marks, A taxonomy of 2-primal rings, J. Algebra 266 (2003), no. 2, 494-520 https://doi.org/10.1016/S0021-8693(03)00301-6
  11. M. B. Rege and S. Chhawchharia, Armendariz rings, Proc. Japan Acad. Ser. A Math. Sci. 73 (1997), no. 1, 14-17 https://doi.org/10.3792/pjaa.73.14
  12. G. Shin, Prime ideals and sheaf representation of a pseudo symmetric ring, Trans. Amer. Math. Soc. 184 (1973), 43-60 https://doi.org/10.2307/1996398

Cited by

  1. On Rings Having McCoy-Like Conditions vol.40, pp.4, 2012, https://doi.org/10.1080/00927872.2010.548842
  2. Nil-Armendariz rings relative to a monoid vol.2, pp.1, 2013, https://doi.org/10.1007/s40065-012-0040-3
  3. ON Π-NEAR-ARMENDARIZ RINGS vol.02, pp.01, 2009, https://doi.org/10.1142/S1793557109000078
  4. On nilpotent elements of ore extensions vol.10, pp.03, 2017, https://doi.org/10.1142/S1793557117500437
  5. On linearly weak Armendariz rings vol.219, pp.4, 2015, https://doi.org/10.1016/j.jpaa.2014.05.039
  6. On Skew Triangular Matrix Rings vol.22, pp.02, 2015, https://doi.org/10.1142/S1005386715000243
  7. π-Armendariz rings relative to a monoid vol.11, pp.4, 2016, https://doi.org/10.1007/s11464-016-0561-8