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ON II-ARMENDARIZ RINGS

CHAN Hul, CHANG Ik LEE, KWANG SUG PARK, AND SUNG Ju Ryu

ABSTRACT. We in this note introduce a concept, so called 7-Armendariz
ring, that is a generalization of both Armendariz rings and 2-primal rings.
We first observe the basic properties of 7-Armendariz rings, construct-
ing typical examples. We next extend the class of 7-Armendariz rings,
through various ring extensions.

1. Introduction

Throughout this note all rings are associative with identity unless otherwise
stated. Let R be a ring. The polynomial ring with an indeterminate z over
R and the n by n matrix ring over R are denoted by R[z] and Mat,(R),
respectively. The prime radical (i.e., the intersection of all prime ideals) of R
and the set of all nilpotent elements in R are denoted by P(R) and N(R),
respectively. Z denotes the ring of integers.

A ring is called reduced if it has no nonzero nilpotent elements. Over a
reduced ring R, Armendariz [2, Lemma 1] proved that a;b; = 0 for all 4,
whenever f(z)g(z) = 0 for f(z) = 312, air®, g(x) = Y7 b;a’ in R[z]. Due
to Rege et al. [11], such rings (possibly not reduced), that satisfy Armendariz’s
result, are called Armendariz. Reduced rings are Armendariz by [2, Lemma 1].
The structure of the class of non-reduced Armendariz rings was observed by
many authors containing Anderson et al. [1], Hirano [5], Huh et al. [6], Kim
et al. [7], Lee et al. [8], Rege et al. [11], and so on.

We call a ring R w-Armendariz provided that whenever f(z)g(z) € N(R[z])
for f(z) = 317 aia’, g(z) = X7_y ba? in R[z] we get a;b; € N(R) for all i, j.

Lemma 1.1. (1) [1, Proposition 1] Let R be an Armendariz ring. If fi,..., fn €
R[z] are such that f1--- f, =0, then a1 ---a, = 0 where a; is a coefficient of
fi

(2) Armendariz rings are w-Armendariz.

(3) Subrings of (w-)Armendariz rings are (7-) Armendariz.
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Proof. (2) is proved by (1) and (3) is trivial. O
The converse of Lemma 1.1(2) need not hold by the following.
Example 1.2. Let S be a reduced ring and

a a12 aiz 0Gi4
0 a ao3 a2
0 0 a asq
0 0 0 a

Then R is 7-Armendariz by Theorem 2.4 below, but R is not Armendariz by
[7, Example 3].

R= S Mat4(S)

Due to Birkenmeier et al. [3], a ring R is called 2-primalif P(R) = N(R). It
is obvious that R is 2-primal if and only if R/P(R) is reduced. A prime ideal P
of aring R is called completely prime if R/ P is a domain. Shin [12, Proposition
1.11] proved that a ring R is 2-primal if and only if every minimal prime ideal of
R is completely prime, and furthermore 2-primal rings were almost completely
characterized by Marks [10].

Proposition 1.3. 2-primal rings are m-Armendariz.

Proof. Let R be a 2-primal ring and f(z) = Y ing a:z’, g(x) = 37— b2’ be in

: : R Rz]
R[z] such that f(x)g(x) € N(R[z]). Since R is 2-primal, ——|[z| & %=
g (2)9(z) € N(Rla) Tl = B
is reduced (hence Armendariz) and so we get a;b; € N(R) for all ¢, j with the
help of Lemma 1.1(1). O

As we see in the following the converse of Proposition 1.3 need not be true
by Birkenmeier et al. [4, Example 3.3] or Marks [9, Example 2.2].

Example 1.4. (1) Let G be an abelian group which is the direct sum of a
countably infinite number of infinite cyclic groups; and denote by {b(0), b(1),
b(—1),..., b(3), b(—i),...} a basis of G. Then there exists one and only one
homomorphism u(i) of G, for i = 1,2,... such that u(¢)(b(j)) = 0if j =0
(mod 2%) and u(3)(b(j)) = b(j — 1) if j # 0 (mod 2¢). Denote U the ring
of endomorphisms of G generated by the endomorphisms «(1),u(2),.... Now
let A be the ring obtained from U by adjoining the identity map of G and
let R = A®z Q and Q the field of rationals. Then we have P(R) = 0 and

T| =
@) TE)]
is reduced and J(R) is nil, R is 7-Armendariz with the help of Lemma 1.1(1).

(2) Let K be a field and let S = K[{t:};cz]/({tn,tnstnsIns —n2 =no —n1 >
0}), and let R = S[z;0] where o is the K-homomorphism of S satisfying
o(t;) = t;4y for all i € Z. Then we have P(R) = 0 and 0 # N(R) = N*(R) by

Jacobson radical of R. Thus R is not 2-primal. Now since
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the computation in [9, Example 2.2] where N*(R) is the sum of all nil ideals
2] Rz]
N*(R) N*(R)z]
is m-Armendariz with the help of Lemma 1.1(1).

114

in R. Thus R is not 2-primal. Now since

is reduced, R

2. Basic structure of m-Armendariz rings

In this section we study the properties of m-Armendariz rings and construct
examples which are necessary in the process. [] denotes the direct product.

Lemma 2.1. (1) A finite direct product of n-Armendariz rings is m- Armendariz.
(2) A finite subdirect product of w-Armendariz rings is ©-Armendariz.

Proof. (1) Let Ry, Ry, ..., R, be 7-Armendariz rings and let R = [[7_, Rs.
Consider f(z) = }°7, aiz’, g(x) = 3.7, b;a? in R[z] such that fg € N(R[z]),
where a; = (ai1,04,...,0:,), bj = (bj1,bj2,...,bjn) in R. For each k =
L2,...,n, we put fe(z) = 32 aunz’, gr(z) = Y7 bjra’ in Ry[z]. Then
frgr € N(Ry[z]). So by 7-Armendarizness of Ry, aixbjr € N(Ry) for all ¢,3.
Thus for each i, j, there exists positive integer m;;x such that (abjx)™* = 0.
Take m;; = max{mijk [k =1,2,.. .,n}, then (aib;)™ = ((aikbjk)mij) = 0.
Thus a;b; € N(R) for all i, j. Therefore R is m-Armendariz.

(2) is obtained from (1) and Lemma 1.1 (3). O

Lemma 2.2. For a ring R suppose that R/I is 7-Armendariz for some ideal
I of R. If I is nil then R is m-Armendariz.

Proof. Suppose that f(z) = 372, a;z’, g(z) = 3.7_g bja? € R[z] are such that
f(z)g(z) € N(R[z]). Write R = R/I and ¥ = 7+ I. Then f(z)g(z) € N(R[z]).
Since R is m-Armendariz, @;b; € N(R) for each i,j. But I is nil, a;b; € N(R)
for each i, j. d

In Lemma 2.2 the condition “I is nil” is not superfluous by the following.
Let R be an algebra over a commutative ring S. The Dorroh extension of R
by S, written by R@p S, is the ring R S with operations (ry,s1) + (r2, s2) =
(1"1 + 72,81 + 82) and (’I’l, 81)(7’2, 82) = (7"17“2 + 8172 + 8271, 8182), where r; € R
and s; € S.

Example 2.3. Let A be an algebra over Z such that A% = 0. Then Maty(A) is
nilpotent. So by Proposition 3.4 below, Mats(A) @p Z is n-Armendariz. Next
consider R = Maty(Z ® A)®pZ and an ideal I = Mats(Z x 0)®p0 of R. Then

I = Maty(Z) and ? = Maty(A) ®p Z is w-Armendariz. Note that I is not

nil and is not 7-Armendariz (as a ring without identity) by the computation
in Example 2.5 below. Thus R is not 7-Armendariz.

Let UTM,(R) (resp. LTM,(R)) denotes the n by n upper (resp. lower)
triangular matrix ring over a ring R. & denotes the direct sum. The following
is one of our main results.
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Theorem 2.4. Let R be a ring. Then the following conditions are equivalent:
(1) R is m-Armendariz;
(2) UTM,(R) is w-Armendariz for each n > 1;
4 \

G Gi2 - Glin
0 a - a2
(3) 1l - . | € Mat,(R) ; is m=-Armendariz;
(\0 0 - a )
(4) LTM,(R) is n-Armendariz for each n > 1;
(/b 0 --- 0 )
byy b - 0
B) 9| . .. .| € Mat,(R) ; is m-Armendariz.
\ bnl bn2 b J

Proof. (1) = (2): Let I = {A € U | each diagonal entry of A is zero}, where
U = UTM,(R). Then I is nilpotent ideal of U and U/I 2 R®@R&® --- © R.
So U/I is w-Armendariz by Lemma 2.1. Thus, by Lemma 2.2, U is also 7-
Armendariz.

(2) = (3) = (1) are trivial. The proof of (1) = (4) = (5) = (1) is similar
to (1) = (2) = (3) = (1). O

From Theorem 2.4, one may suspect that if R is m-Armendariz then Mat,(R)
is m-Armendariz for n > 2. But the following example erases the possibility.

00
1 -1 00 1 0 C 1
(0 0 >m and g(z) = (1 0) + (1 O)x be polynomials in S{z]. Then

f(x)g{z) = 0. But ((1) _01) ((1) 8) = (_01 8) is not nilpotent. Thus S is

not m-Armendariz.

Example 2.5. Let R be a ring and let S = Maty(R). Let f(z) = (1 0) +

Proposition 2.6. Let {R.|a € A an index set} be a family of w-Armendariz
rings. If R = [[,ca Ra is of bounded index of nilpotency, then R is -
Armendariz.

Proof. We put N{> 1) as the index of nilpotency of R. Then R, is of bound
index of nilpotency < N, for each a € A. Consider f(z) = 3 v, aiz’, g(z) =
>i—objz? € Rlz] such that fg € N(R[z]), where a; = (aia)aca, bj = (bja)aea
€ R. Fora € A, weput fo(z) = Y10 Gial’, ga(2) = Y.7_g bjad’ € Ry[z], then
faga € N(R,[z]). Since R,, is a m-Armendariz ring of bounded index of nilpo-
tency < N, (@iabja)”Y = 0 for all 4,5. Thus (a;b;)N = ((aia)aeA(bja)aEA)N =
(@iabja)Sea = ((@iabja)™) cp = 0 for each i, j. Therefore (a;b;) € N(R) and
so R is m-Armendariz. a
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In Proposition 2.6, the condition “of bounded index of nilpotency” is not
superfluous by the following.

Example 2.7. Let R, = UTM>-(Z) (n = 1,2,...). Then by Theorem 2.4,
R, is a m-Armendariz ring. But their direct product B = [] -, R is not
7-Armendariz. -

Consider two polynomials f(z) = Ag + A1z, g(z) = By + Bix in R[z] where

_ _ (1 (-D* _ [ Aren-y | Crn-y \
Ak—(Ak1—<O 0 )7-"3Akn—\ 0 | Ak(n—l)}y.” 3

_ _ (0 (=1)kH _ [ Ben—1) | Dign-1)
Bk—(Bk1—<0 1 ,...,Bkn—\ O [ Bk(nkl)},... 5

and Cy, = ((—1)k(j+1))2nx2n, Dy = ((—1)(k+1)i)2nx2n € Maton xon (Z) for
each k = 0,1 and n = 1,2,.... Now we will show that fg = 0 € N(R[z]),
but AoB; ¢ N(R), that is R is not 7-Armendariz. To complete our result, we
prove the following claim by induction on n.

Claim. 1. A3, By, =0fork=0,1andn=1,2,....
2. Ay, Bin = —A14 By, such that Ag, By, € N(R)\(0) forn =1,2,....

If n = 1 then A3 By = <8 8) for ¥k = 0,1. Ap1B1; = <8 g) =

—A11Bo1 # 0 and (A1 B11)? = 0. We are done. Now suppose that it holds for
n <l (I >2)and let n =1. Note that Ay, Dgn = CinBin = 0 for k = 0,1 and

AOnDln + cVO'n.-Bln

2n 2" 4+2 242 ntl 2 ontl_9 on+l

2n -2 27 2™ ntl g gntl g 9ntl 9

2" —2 2™ 2m 2ntl g4 gntl 4 ontl _ 9
2 4 4 2" 2n 2" 4+ 2
2 4 4 2" 2" 2" + 2
0 2 2 2" -2 2" -2 2"

= (AlnDOn + ClnBOn)a
that is Agp D1, + ConBin = “(AlnDOn + ClnBOn) = 2"I2n+(some matrix

whose entries are all non-negative), where Iy is the 2™ x 2" identity matrix.
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By notes and inductive hypothesis,

Ara-1) Ck(l—l)\ (Bk(l—l) Dk(l—l)\
ApBy =
0 Ak(l—l)) k 0 Bk(l—l))
Aka-1yBra-1y | Ara-1)Dra-1) + Ok(l—l)Bk(l-—l)\
= =0.
0 J Apa-1)Bra-1) )
Also
Ao-1yBia-1) | Aot-1yD1g-1y + CO(I—l)Bl(l—-l)\
ApBy =
0 ( Ao-1)Bia-1) )
—A10-1)Bo-1) | —(A11-1)Do-1) + 01(1—1)30(1—1))\
0 r —A10-1)Bo-1) }
= —AyuBy.

Since Ap—1)B1—1) is in N(R(;_1y)\(0), by the inductional hypothesis, there
exists m in positive integers such that (Ag—1)By—1))™ # 0 and

(Aog-1)Big—1))™*t = 0.

So by notes, (AgBu)™*" = 0 |(B) is not a zero matrix and (Ao By )*(m+1) =

0, that is Ag B1; € N(R;)\(0). Therefore our claim is proved by the induction
and so f(x)g(z) = 0. Furthermore the sequence of index of Ao, B1n is increas-
ing. (In fact, the index of Ap,Bi, is equal to 2"~' + 1, by using another
method.) Thus ApBj is not a nilpotent element of R.

3. More examples of m-Armendariz rings

In this section we extend the class of m-Armendariz rings through various
extensions. We first consider the case of direct limits of direct systems of 7-
Armendariz rings, comparing with Lemma 2.1.

Proposition 3.1. The direct limit of a direct system of w- Armendariz rings is
also w-Armendariz.
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Proof. Let D = {R;, a;;} be a direct system of m-Armendariz rings R; for i € I
and ring homomorphisms «;; : R; — R; for each i < j satisfying a;;(1) = 1,
where [ is a directed partially ordered set. Set R = lim R; be the direct limit
of D with ¢; : R; = R and tja;; = t;. We will prove that R is a m-Armendariz
ring. Take z,y € R. Then 2 = ;(z;), y = ¢;(y;) for some i,j € I and there is
k € I such that i <k, j < k. Define

T4y = w(ir(z:) + ajr(y;)) and zy = u(our (@) an(y;)),
where a;x(2;) and a;i(y;) are in R,. Then R forms a ring with 0 = ¢;(0) and
1= Li(l).

Now suppose f(z)g(z) € N(Rlz]) for f(z) = 31" jasz*, g(x) = 31, bzt
in R[z]. There are iy, j;,k € I such that a, = ti,(ai,), by = ¢j,(b;,), is < k,
jt S k. So

asbe = u (i k(@i )aj i (bs,)),
and from f(z)g(z) € N(R[z]) we have

m n

F@)g(@) = Y wlik(a:,)z*) (Y (s k(bs,))a") € N(Rylz]).
5=0 t=0
But Ry is m-Armendariz and so ¢ (a,x(ai, ),k (bj,)) € N(Ry). Thus ash; €
N(R) and R is m-Armendariz. O

Proposition 3.2. Let R be a ring and A be a multiplicative monoid in R

consisting of central reqular elements. Then R is n-Armendariz if and only if
so is AT'R.

Proof. (<) is obtained from Lemma 1.1(3). (=) Let R be a 7-Armendariz ring
and let S = A~!'R, where is a multiplicative monoid in R consisting central
regular elements of R. Note that if f(z) = Y}1" aiz’, g(x) = Y7o bz’ are
in S[z](a;, B; € S), then we can assume that a; = a;u~" and B; = bjv~! for
some a;,b; € R, u,v € A for all ¢,j. Now suppose that f(z)g(z) € N(S[z])
then there exist a positive integer k such that

0=(f9)" = (3 asfja™)"
= (Z aiu_lij_lxi+j)k = (Z aibjlb'iJrj)k ((UU)k)_l :

Since (uv)* € A, (325, aibjz"™)* = 0 and so that ), ;a;b;z**7 € N(R[z]).
By the hypothesis, a;b; € N(R) for all 7,j. Immediately, we can show that
a;f; = (aiu_lij_l) is also a nilpotent element of S for all 4, j. Therefore S is
a m-Armendariz ring. O

The ring of Laurent polynomials in z, coefficients in a ring R, consists of
all formal sums Y, m;z* with obvious addition and multiplication, where
m; € R and k,n are (possibly negative) integers; denotes it by R[z;z71].
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Corollary 3.3. (1) A commutative ring R is m-Armendariz if and only if so
is the total quotient ring of R.
(2) Let R be a ring. R[z] is n-Armendariz if and only if so is R[z;z™].

Proof. It suflices to show the necessity by Lemma 1.1(3).

(1) Let A be the set of all regular elements of R. Then A satisfies the
condition of Proposition 3.2 and A~!R is the total quotient ring of R. Thus
the total quotient ring of R is m-Armendariz.

(2) Let A = {1,z,2?,...} C R[z]. Then A satisfies the condition of Propo-
sition 3.2 and so R[z;z~'] = A~ R is m-Armendariz. O

Proposition 3.4. Let A be a nil algebra over Z. Then A &p Z of A by Z is
w-Armendariz.

Proof. Since A is nil, A ®p 0 is a nil ideal of A ®p Z. Thus A $p Z is a ring

Z
with a nil ideal A ®p 0 such that %2—]';6

Lemma 2.2, A ®p Z is m-Armendariz. O

= Z is a m-Armendariz ring. So by

Proposition 3.5. A ring R is w-Armendariz if and only if R[z]/{z™) is -
Armendariz for any positive integer n, where (z™) is the ideal of R[z] generated
by =™.

Proof. Tt suffices to show the necessity by Lemma 1.1(3). Let R be a =-
Armendariz ring and n be a positive integer. Put S = R[z]/(z") and & =

z + (z™). Then —S: = R and so S/S% is m-Armendariz. Since SZ is a nil ideal
of S, S is #m-Armendariz by Lemma 2.2. O
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