DOI QR코드

DOI QR Code

SOME REMARKS ON COTORSION ENVELOPES OF MODULES

  • Kim, Hae-Sik (DEPARTMENT OF MATHEMATICS KYUNGPOOK NATIONAL UNIVERSITY) ;
  • Song, Yeong-Moo (DEPARTMENT OF MATHEMATICS EDUCATION SUNCHON NATIONAL UNIVERSITY)
  • Published : 2007.11.30

Abstract

In this paper we prove that the extension of pure injective module is pure injective if and only if the cotorsion envelope and the pure injective envelope of any R-module M are isomorphic over M. And we prove that if the product of pure injective envelopes of flat modules is a pure injective envelope and the product of flat covers is a flat cover, then the product of cotorsion envelopes is a cotorsion envelope.

Keywords

References

  1. L. Bican, R. El Bashir, and E. Enochs, All modules have flat covers, Bull. London Math. Soc. 33(2001), no. 4, 385-390 https://doi.org/10.1017/S0024609301008104
  2. E. Enochs, Torsion free covering modules. II, Arch. Math. (Basel) 22 (1971), 37-52 https://doi.org/10.1007/BF01222534
  3. E. Enochs, J. R. Garcia Rozas, and L. Oyonarte, Are covering (enveloping) morphisms minimal?, Proc. Amer. Math. Soc. 128 (2000), no. 10, 2863-2868 https://doi.org/10.1090/S0002-9939-00-05339-9
  4. T. Wakamatsu, Stable equivalence for self-injective algebras and a generalization of tilting modules, J. Algebra 134 (1990), no. 2, 298-325 https://doi.org/10.1016/0021-8693(90)90055-S
  5. J. Xu, Flat covers of modules, Lecture Notes in Mathematics, 1634, Springer-Verlag, Berlin, 1996