DOI QR코드

DOI QR Code

Carbon Nanotube Synthesis using Magnetic Null Discharge Plasma Production Technology

  • Sung, Youl-Moon (Department of Electrical Electronic Engineering, Kyungsung University)
  • Published : 2007.12.31

Abstract

Carbon nanotube (CNT) properties, produced using a magnetic null discharge (MND) plasma production technology, were investigated. We firstly deposited the Fe layer 200 nm in thickness on Si substrate by the magnetic null discharge sputter method at the substrate temperature of $300도C$, and then prepared CNTs on the catalyst layer by using the magnetic null discharge (MND) based CVD method. CNTs were deposited in a gas mixture of CH4 and N2 at a total pressure of 1 Torr by the MND-CVD method. The substrate temperature and the RF power were $650^{\circ}C$ and 600W, respectively. The characterization data indicated that the proposed source could synthesize CNTs even under relatively severe conditions for the magnetic null discharge formation.

Keywords

References

  1. S. Iijima, Nature 354 (1991) 56 https://doi.org/10.1038/354056a0
  2. S. Iijima and T. Ichihashi, Nature 363 (1993) 603 https://doi.org/10.1038/363603a0
  3. D. S. Bethune, C. H. Kiang, M. S. Devries, G. Gorman, R. Savoy, J. Vazquez and R. Beyers, Nature 363 (1993) 605 https://doi.org/10.1038/363605a0
  4. N. Hamada, S. Sawada and A. Oshiyama, Phys. Rev. Lett. 68 (1992) 1579 https://doi.org/10.1103/PhysRevLett.68.1579
  5. W.Z. Li, S.S. Xie, L.X. Qain, B.H. Chang, B.S. Zou, W.Y. Zhou, R.A. Zhao, G. Wang, Science 274 (1996) 1701 https://doi.org/10.1126/science.274.5293.1701
  6. A. Thess et al., Science 273 (1996) 483 https://doi.org/10.1126/science.273.5274.483
  7. Z.F. Ren, Z.P. Huang, J.W. Xu, J.H. Wang, P. Bush, M.P. Siegal, P.N. Provencio, Science 282 (1998) 1105 https://doi.org/10.1126/science.282.5391.1105
  8. T. Uchida, Jpn. J. Appl. Phys. 33 (1994) L43 https://doi.org/10.1143/JJAP.33.L43
  9. Z. Yoshida, T. Uchida, Jpn. J.Appl. Phys. 34 (1995) 4213 https://doi.org/10.1143/JJAP.34.4213
  10. T. Sakoda, T. Miyao, K. Uchino, K. Muraoka, Jpn. J. Appl. Phys. 36 (1997) 6981 https://doi.org/10.1143/JJAP.36.6981
  11. W. Chen, T. Hayashi, M. Itoh, Y. Morikawa, Jpn. J. Appl. Phys. 38 (1999) 4296 https://doi.org/10.1143/JJAP.38.4296
  12. Y. M. Sung, K. Uchino, K. Muraoka, T. Sakoda, J. Vac. Sci. Technol. A18 (2000) 2149
  13. Y. M. Sung, Y. Okraku-Yirenkyi, M. Otsubo, C. Honda, K. Uchino, K. Muraoka, IEEE Trans. Plasma Sci. 30 (2002) 142
  14. Y. M. Sung, S. Atsuta, J. H. Yang, M. Otsubo, C. Honda, IEEJ Trans. FM, 124 (2004) 565 https://doi.org/10.1541/ieejfms.124.565
  15. T. Sakoda, Y. M. Sung, J. Vac. Sci. Technol. A 20 (2002) 1964 https://doi.org/10.1116/1.1513644
  16. Y. M. Sung, C. Honda, J. Vac. Sci. Technol. B 20 (200) 1457
  17. W. Li, H. Zhang, et al., Appl. Phys. Lett. 70 (1997) 2684 https://doi.org/10.1063/1.118993

Cited by

  1. 60Co γ-ray irradiation effect and degradation behaviors of a carbon nanotube and poly(ethylene-co-vinyl acetate) nanocomposites vol.93, pp.7, 2008, https://doi.org/10.1016/j.polymdegradstab.2008.04.007
  2. Transparent conductive titanium-doped indium oxide films prepared by a magnetic null discharge sputter source vol.83, pp.1, 2008, https://doi.org/10.1016/j.vacuum.2008.04.079
  3. Effect of Duty Cycle on Atmospheric Plasma Generation using Micromachined Electrodes vol.48, pp.4, 2009, https://doi.org/10.1143/JJAP.48.04C196