Anti-Thrombogenic and Anti-Inflammatory Effects of Solvent Fractions from Leaves of Zanthoxylum Schinifolium (Sancho Namu) in Rats Fed High Fat Diet

고지방식이 흰쥐에서 산초나무 Butanol 및 Methylene Chloride 분획의 항혈전 및 항염증 작용

  • Jang, Hyun-Seo (Department of Food Science and Nutrition, Catholic University of Daegu) ;
  • Rhee, Soon-Jae (Department of Food Science and Nutrition, Catholic University of Daegu) ;
  • Woo, Mi-Hee (Department of Pharmacy, Catholic University of Daegu) ;
  • Cho, Sung-Hee (Department of Food Science and Nutrition, Catholic University of Daegu)
  • 장현서 (대구가톨릭대학교 식품영양학과) ;
  • 이순재 (대구가톨릭대학교 식품영양학과) ;
  • 우미희 (대구가톨릭대학교 약학과) ;
  • 조성희 (대구가톨릭대학교 식품영양학과)
  • Published : 2007.10.30

Abstract

This study was performed to investigate anti-thrombogenic, anti-inflammatory effects of n-BuOH (B) and $CH_2Cl_2$ (MC) fractions extracted from Sancho (Zanthoxylum. schinifolium) leaves in rats fed high fat diets. The experimental animal groups were consisted of eight including one 5% fat (N) and one 20% fat (H) without the test materials in diets and six H groups of feeding three levels (50, 100 and 150 mg/day) of the B and the MC fractions from Z. schinifolium, respectively. Plasma activated partial thromboplastin times and thrombin times of H group were decreased compared to the N group, but they were increased by feeding the MC fraction of 50 mg and over. Polymorphonuclear leukocyte 5#-lipo-xygenase activities and leukotriene $B_4$ contents of the H group were significantly increased compared to the N group, but they were decreased in the 100 mg and 150 mg of B fraction or the 150 mg of MC fraction fed groups. Liver cytochrome $P_{450}$, $O_2^-$, $H_2O_2$ and GSSG contents were increased by the high fat diet but decreased by feeding the B fraction or the MC fraction, while GSH content and glutathione S-transferase activity lowered by high fat diet were increased by feeding the two solvent fractions. The effects of the solvent fractions were evident at the level of 100 mg/day and over. The present results confirmed that two solvent fractions from the leaves of Z, schinifolium have enhancing effects on anti-thrombosis and anti-inflammation partly by antioxidant action and partly by direct modulation of the respective processeds. In conclusion, the n-BuOH and $CH_2Cl_2$ fractions from leaves of Z, schinifolium can be utilized as the proper ingredients of functional foods for preventing chronic degenerative disease.

본 연구에서는 in vitro에서 검색된 산초나무 잎의 용매분획의 항혈전 및 항염증작용을 in vivo에서 확인하고자 고지방식이를 섭취한 흰쥐에게 n-butanol 분획과 methylene chloride분획을 1일 50, 100, 150 mg을 4주간 경구투여 하였다. 혈장 APTT 및 TT는 정상식이군에 비해 고지방식이군에서 유의적으로 감소되었으며, 고지방식이군에 methylene chloride분획 50 mg 이상 공급군은 유의적으로 증가되어 100 mg 이상 공급군은 정상식이군 수준이었다. 다형핵 백혈구 5#-lipoxygenase 활성과 leukotriene $B_4$ 함량이 정상식이군에 비해 고지방식이군에서 증가되었으며, 5#-lipoxygenase 활성은 두 용매 분획을 100 mg 이상 공급한 군들이 모두 감소하였다. 백혈구의 leukotriene $B_4$ 함량은 n-butanol 분획에 의하여 역시 100 mg 이상 공급으로 감소하였으나 methylene chloride 분획에 의하여는 150 mg 공급군에서만 감소하였다. 간 조직 마이크로솜의 cytochrome $P_{450}$ 함량은 정상식이군에 비해 고지방식이군에서 유의적으로 증가되었으며, 두 용매분획의 투여로 감소하는 경향이었으나 butanol 분획 150mg 투여군에서만 유의적으로 감소하였다. 간 조직 $O_2^-$M의 함량과 $H_2O_2$ 함량도 정상식이군에 비해 고지방식이군에서 증가되었으며, butanol 분획 100 mg 이상투여로 $O_2^-$의 함량이 감소하고 methylene chloride분획 100 mg이상에서 $H_2O_2$ 함량이 감소하였고 두 용매 분획을 150 gm 이상 투여하였을 때는 $O_2^-$$H_2O_2$함량이 모두 감소하였다. 간 조직 GST 활성과 GSH 함량 및 GSG/GSSG 비율은 정상식이군에 비해 고지방식이군에서 감소되었으며, 두 용매 분획 150 mg 투여로 유의적으로 증가되었으나 GSG/GSSG 비율은 100 mg이상 투여로 증가하였다. 결론적으로, 산초나무 잎의 methylene chloride분획은 고지방식이 흰쥐에서 혈행 장애와 염증 반응을 완화시키고, 간 조직에서의 자유라디칼 생성계를 약화시킬 뿐만 아니라, glutathione계의 환원상태를 유지시킴으로서 신체를 보호하는 효과가 있으며 butanol 분획은 항혈전 효과를 제외한 항염증 및 항산화작용에 의한 신체 보호 작용은 기대된다. 이러한 활성을 이용하면 날로 증가되는 지방섭취량에 의한 만성퇴행성질환을 억제하는데 우수한 기능성식품 소재로써 활용할 수 있다고 생각된다.

Keywords

References

  1. Ro YD, Shin MK, Song HJ. A herbalogical study on the plants of Rutaceae grown in Korea. J Herbology 1997; 12: 135-164
  2. Lee SJ. Korean Folk Medicine-Monographs Series. No.3. Publishing Center of Seoul National University, Seoul, Korea: 1966. p.88
  3. Xiong QB, Shi DW. Morphological and histological studies of Chinese traditional drug 'hua jiao' i.pericarpium zantholyli) and its allied drugs. Yao Hsueh Hsueh Pao 1991; 26: 938-947
  4. Kim KW, Baek JK, Kim JS. Isolation of Herbicidal Compounds from the Fruit of Zanthoxylum schinifolium S. et. Z. Kor J Weed Sci 2005; 25: 194-201
  5. Chen IS, Lin Y, Tsai IL, Teng CM, Ko FN, Ishikawa T, Ishii H. Coumarins and anti-platelet aggregation constituents from Zanthoxylum schinifolium. Phytochemistry 1995; 39: 1091-1097 https://doi.org/10.1016/0031-9422(95)00054-B
  6. Jo YS, Huong DTL, Bae KH, Lee MK, Kim YH. Monoamine oxidase inhibitory coumarin from Zanthoxylum schinifolium. Planta Medica 2000; 68: 84-85 https://doi.org/10.1055/s-2002-20056
  7. Mun SI. Effects of Zanthoxylum schinifoliumand its active princilpe on serum lipid levels in carbon tetrachloride-treated mice. Korean J Food Nutr 2000; 13: 249-254
  8. Lim SJ, Han HK, Ko JH. Effects of edible and medicinal plants intake on blood glucose, glycogen and protein levels in streptozotocin induceddiabetic rats. Korean J Nutr 2003; 36: 981-989
  9. Jang MJ, Rhee SJ, Cho SH, Woo MH, Choi JH. A study on the antioxidative, anti-inflammatory and anti-thrombogenic effects of Zanthoxylum piperitum DC. extract. J KoreanSoc Food Sci Nutr 2006; 35: 21-27 https://doi.org/10.3746/jkfn.2006.35.1.021
  10. Jang MJ, Woo MH, Rhee SJ, Cho SH. Antioxidative and antiaging effectsof sancho (Zanthoxylum schinifolium) extract in rats fed high fat diet. Nutritional Sciences 2006; 9: 159-166
  11. Reeves PG, Nielsen FH, Fahey Jr GC. AIN-93 Purified diets for laboratory rodents: Final report ofthe American Institute of Nutrtion ad hoc writing committee on the reformation of the AIN76Arodentdiet. J Nutr 1993; 123: 1939-1951 https://doi.org/10.1093/jn/123.11.1939
  12. Hogeboom GH. Fractionation of cell componentsof animal tissues in Methods Enzymol (Bergmeyer HU ed. Academic Press, New York) 1955; 1: 16-19
  13. Min KR, Shin JM, Chang YS, Kim YS. The activity of 5-lipoxy. genase and the inhibitor of leukotriene B4 biosynthesis. Yakhak Hoeji 1989; 33: 319-323
  14. Omura T, Sato R. The carbon monooxide binding pigment of liver microsomes. J Biol Chem 1964; 239: 2379-2385
  15. Azzi A, Montecucco C, Richter C. The use of acetylated ferricytochrome c for the detection of superoxide radicals produced in biologicalmembrane. Biochem Biophys Res Commun 1975; 65: 597-603 https://doi.org/10.1016/S0006-291X(75)80188-4
  16. Gay C, Gebicki JM. A critical evaluation of the effect of sorbitol on the ferric-xylenol orange hydroperoxide assay. Anal Biochem 2000; 284: 217-220 https://doi.org/10.1006/abio.2000.4696
  17. Habig WH, Pabst MJ, Jakoby WB. Glutathione Sstransferase: the first enzymatic steps in mercapturic acid formation. J Biol Chem 1974;249: 7130-7139
  18. Lowry OH, Rosebrough NJ, Farr AL, Randall RI. Protein measurement with the folin phenol reagent. J Bio Chem 1951; 193: 265-275
  19. Bernt E, Beugmeyer HU. Methods of enzymatic analysis: Glutathione. 2nd English Ed. Academic Press 1974; 444: 1641
  20. Bae JH, Bassenge E, Kim KB. Postprandialhypertriglyceridemia impairs endothelial function by enhanced oxidant stress. Atheroslcerosis 2001; 155: 517-523 https://doi.org/10.1016/S0021-9150(00)00601-8
  21. Anderson RA, Evans ML, Ellis GRI. The relationships between postprandial lipemia, endothelial function and oxidative stress in healthy individuals and type 2 diabetes. Atherosclerosis 2001; 154: 475-483 https://doi.org/10.1016/S0021-9150(00)00499-8
  22. Amir JG, Hontecillas R, Si H, Liu D, Bassaganya-Riera J. Dietary abscisic acid ameliorates glucose tolerance and obesity-related inflammation in db/db mice fed high-fat diets. Clinical Nutrition 2007; 26: 107-116 https://doi.org/10.1016/j.clnu.2006.07.008
  23. Luyer MD, Jacobs JA, Hadfoune M, Vreugdenhil AC, Dejong CH, Buurman CH, Greve JAM. Effect of high-fat enteral nutrition on inflammation and gut barrier function in rats after hemorrhagic shock. Gastroenterology 2003; 124: A339
  24. Zhang X, Dong F, Ren J, Driscoll MJ, Culver B. High dietary fat inducesNADPH oxidase-associatedoxidative stress and inflammation in rat cerebral cortex.Experimental Neurology 2005; 191: 318-325 https://doi.org/10.1016/j.expneurol.2004.10.011
  25. Elmas F,Kalsch T, SuvajacN, LewelingH, NeumaierM, Dempfle CF, Borggrefe M. Activation of coagulation during alimentary lipemia under real-life conditions. Int 'l J Cardiol 2007: 114; 172-175 https://doi.org/10.1016/j.ijcard.2006.01.011
  26. Stokes KY,Cooper D, Tailor A, Grange DN. Hypercholesterolemia promotes inflammation and microvascular dysfunction: role of nitric oxide and superoxide. Free Radical Biology Medicine 2002; 33: 1026-1036 https://doi.org/10.1016/S0891-5849(02)01015-8
  27. Zhang L, Zalewski A, Liu Y. Diabetes-induced oxidative stress and low-grade inflammtion in porccine coronary artery. Artehroscleosis 2000; 150: 245-253
  28. Krotz F, Sohn HY, Pohl U. Rreactive oxygenspecies: playersin the plateletgame. Arteioscler Thromb Vasc Biol 2004; 24: 1988-1996 https://doi.org/10.1161/01.ATV.0000145574.90840.7d
  29. Begonja AJ, Teichmann L, Geiger J, Gambaryan S, Walter U. Platelet regylation by NOlcGMP signaling and NAD (P)H oxidase- generated ROS. Blood cells Mol Dis 2006; 36: 166-170 https://doi.org/10.1016/j.bcmd.2005.12.028
  30. Kim SH, Park HJ, Lee CM, Choi lW,Moon DO, Roh HJ, Lee HK, Park YM. Epigallocatechin-3-gallate protectstoluene diisocyanateinduced airway inflammationin a murine model of asthma. FEBS Letters 2006; 580: 1883-1890 https://doi.org/10.1016/j.febslet.2006.02.052
  31. Park KK, Park JH, Jung YJ, Chung WY.Inhibitory effects of chlorophyllin, hemin and tetrakis (4-benzoicacid)porphyrin on oxidative DNA damage and mouse skin inflammation induced by 12-O-tetradecanoylphorbol-13-acetate as a possible anti-tumor promoting mechanism. Mutation Res/Genetic Toxicology Environmental Mutagenesis 2003; 542: 89-97 https://doi.org/10.1016/j.mrgentox.2003.09.001
  32. Jin MH, YookJM, Lee EK, Lin CX, Quan ZJ, Son KH, Bae KH, Kim HP, Kang SS, Chang HW. Anti-inflammatory activity of Ailanthus altissima in ovalbumin-induced lung inflammation. Biol Pharm Bull 2006; 29: 884-888 https://doi.org/10.1248/bpb.29.884
  33. Sarkar D, Fisher PB. Molecular mechanisms of aging-associated inflammation. Cancer Lett 2006; 236: 13-23 https://doi.org/10.1016/j.canlet.2005.04.009
  34. Zhe F. Bioactive constituents from the leaves of Zanthoxylum schinifolium, MS thesis. Catholic Univ of Daegu: 2006
  35. Steiner M, Li W.Aged garlic extract a modulator of cardiovascular risk factors: a dose-finding study on the effects of AGE on Ipateletfunctions. J Nutr 2001; 131: 980S-984S
  36. Shin SH, Mim MK. Effect of dried powders or ethanol extracts of garlic flesh and peel on lipid metabolism and antithrombogenic capacity in 16-month-old rats. Korean J Nutrition 2004; 37: 515-525
  37. Jang HS. Study on the bio-activities related to antioxidant and lipid modulating functions of various parts of Zanthoxylum schinifoliumi n rats fed high fat diet. Ph. D thesis. Catholic Univ of Daegu; 2007
  38. Stoilov I, Krueger W,Mankowski D, Guernsey L, Kaur A, Glynn J, Thrall RS. The cytochromes $P_{450}$ (Cyp) response to allergic inflammation of the lung. Arch Biochem Biophys 2006; 456: 30-38 https://doi.org/10.1016/j.abb.2006.09.029
  39. Haag M, Frossard N, Pons F. Cytochromes $P_{450}$ et glutathion Stransferasespulmonaires: des liens possibles avec I'inflammation et I'asthme? Cytochromes $P_{450}$ and glutathiones-transferases: any association with inflammation and asthma? Rev Fran Allerg Immunol Clin 2001; 41: 579-586
  40. Tan BKH, Tan CH, Pushparajc PN. Anti-diabetic activity of the semi-purified fractions of Averrhoabilimbi in high fat diet fedstreptozotocin- induced diabetic rats. Life Sci 2005; 76: 2827-2839 https://doi.org/10.1016/j.lfs.2004.10.051
  41. JH, Park JY, Ju YS. Inhibitory effectof licorice ethanol extracts on cytochrome $P_{450}$ drug-metabolizing enzymes in human liver microsome. Kor J Herbiology 2004; 19: 47-54
  42. Demori I, Voci A, Fugassa E, Burlando B. Combined effects of high-fat diet and ethanol induce oxidative stress in rat liver. AIcohol 2006; 40: 185-191
  43. YangR, Le G, Li A, Zheng J, Shi Y.Effectof antioxidant capacity on blood lipid metabolism and lipoprotein lipase activity of rats fed a high-fatdiet. Nutrition 2006; 22: 1185-1191 https://doi.org/10.1016/j.nut.2006.08.018