벼 조직배양 기간에 따른 retrotransposon(Tos17)의 활성에 관한 연구

The Studies of Activity of Retrotransposon(Tos17) according to Tissue Culture Periods in Rice(Oryza sativa L.)

  • 양희은 (강원대학교 BT특성화학부대학 생명공학부 식물생명공학) ;
  • 방일란 (강원대학교 BT특성화학부대학 생명공학부 식물생명공학) ;
  • 신영범 (강원대학교 BT특성화학부대학 생명공학부 식물생명공학) ;
  • 이병진 (강원대학교 농업생명과학대학 부속농장) ;
  • 홍순관 (강원대학교 BT특성화학부대학 생명공학부 식물생명공학)
  • Yang, Hee-Eun (Department of Plant Biotechnology, Division of Biotechnology, School of Bioscience & Biotechnology, Kangwon National University) ;
  • Fang, Yilan (Department of Plant Biotechnology, Division of Biotechnology, School of Bioscience & Biotechnology, Kangwon National University) ;
  • Shin, Young-Boum (Department of Plant Biotechnology, Division of Biotechnology, School of Bioscience & Biotechnology, Kangwon National University) ;
  • Lee, Boung-Jin (Experimental Station, College of Agricultural and Life Sciences, Kangwon National University) ;
  • Hong, Soon-Kwan (Department of Plant Biotechnology, Division of Biotechnology, School of Bioscience & Biotechnology, Kangwon National University)
  • 발행 : 2007.10.30

초록

벼의 캘러스를 대상으로 Tos17 활성 증가를 이용하여 새로운 돌연변이체의 유발 및 선발에 대한 연구는 많이 시도되어 왔다. 일품벼에서 배양된 캘러스를 이용하여 배양기간 및 배양조건에 따른 retrotransposon(Tos17)의 활성화를 유도함을 일차적인 목적으로 하고, 이에 따른 재분화 개체를 통하여 다양한 돌연변이체($M_1$)를 얻음과 동시에 세대의 진전에 따른 돌연변이체($M_2$, $M_3$)가 나타내는 표현형과 Tos17과의 연관성을 확인하여 특정 유전자의 cloning을 향후 목적으로 하고 있다. 1. 본 연구에서는 배양기간에 따라 총 371개체의 $M_1$ 돌연변이체를 얻었다. 2. 각각의 배양기간 단계별 재분화 식물체에서 얻어진 Tos17의 활성정도를 나타내는 Southern blot의 결과 normal 즉, 기본 식물인 일품벼는 5개의 copy수를 가지고 있는 것을 알 수 있었으며, 1개월 7개, 2개월 8개, 3개월 9.5개, 5개월 12개, 6개월 6개, 7개월 13.5개, 8개월 17.5개의 band를 확인할 수 있었다. 3. Tos17의 Southern blot의 결과, $3{\sim}5$개월의 배양기간이 경과해야만 기본 copy의 2배수로 Tos17이 활성화됨을 알 수 있었다. 향후 $M_1$돌연변이체의 세대진전을 통하여 $M_2$, $M_3$ 세대 등의 다양한 재조합 개체의 확보 및 분석이 중요하다. 또한 다양한 형태로 원하는 돌연변이를 선발하는 screening 방법을 개발하는 것이 시급하고 중요한 과제이다.

Using the active-increment of Tos17 copies in the genome of Oryza sativa L., there were many studies about induction and selection of new mutants. This study mainly focuses on the induction for retrotransposon(Tos17) activity in the callus of Ilpumbyeo(Oryza sativa L.) according to varied culture period and condition. The objectives of this study are obtaining various mutants($M_1$) through plant regeneration, identification of the mutation relation with Tos17, and subsequent phenotyping of the mutants($M_2,\;M_3$). A total of 371 $M_1$ mutants was obtained. The degree of Tos17 activity obtained regeneration plants with each different culture period was evaluated by Southern blot analysis. The result showed that control Ilpumbyeo rice has 5 numbers of copies and the band numbers obtained 7, 8, 9.5, 12, 6, 13.5, 17.5 from culture period of 1, 2, 3, 5, 6, 7, 8 month, respectively. In this study, the result showed that most effectual culture period for activity of Tos17 in Ilpumbyeo rice is 5 month. Hereafter, collections and analysis of various recombination plants will act on an important factor in multiplication and preservation of $M_2$ and $M_3$ generation. And an urgent and important subject is a development of screening method for selection of diverse mutants.

키워드

참고문헌

  1. Blakely L.M. and F.C. Steward. 1964. Growth and organized development of cultured cells 7 cellular variation. Amer. J. Bot. 51(8): 809-820 https://doi.org/10.2307/2439885
  2. Fuerstenberg S.I. and M.A. Johns. 1990. Distribution of Bs1 retrotransposons in Zea and related gene. Thero. Appl. Genet. 80: 680-686
  3. Fukuchi A., F. Kikuchi and H. Hirochika. 1993. DNA fingerprintion of cultivated rice retrotransposon probes. Jpn, J. Genet. 68: 195-204 https://doi.org/10.1266/jjg.68.195
  4. Gabriel A., M. Willems, E.H. Mules and J.D. Boeke. 1996. Replication infidelity during a single cycle of Tyl retrotransposition. PNAS USA 93: 7767-7771 https://doi.org/10.1073/pnas.93.15.7767
  5. Grandbastien M.A., A. Spielman and M. Caboche. 1989. Tntl, a mobile retroviral-like transposable element of tobacco isolated by plant cell genetics. Nature 26: 376-380
  6. Hirochika H. 1993. Activation of tobacco retrotransposons during tissue culture. EMBO J. 12: 2521-2528
  7. Hirochika H. 1997. Retrotransposons of rice : their regulation and use for genome analysis. Plant Mol. Biol. 35: 231-240 https://doi.org/10.1023/A:1005774705893
  8. Hirochika H., A. Fukuchi and F. Kikuchi. 1992. Retrotransposon families in rice. Mol. Gen. Gemet. 233: 209-216 https://doi.org/10.1007/BF00587581
  9. Hirochika H., H. Otsuki, M. Yoshikawa, Y. Otsuki, K. Sugimoto and S. Takeda. 1996. Autonomous transposition of the tobacco retrotransposon Ttol in rice. Plant Cell 8: 725-734 https://doi.org/10.1105/tpc.8.4.725
  10. Hirochika H., K. Sugimoto, Y. Otsuki, H. Tsugawa and M. Kanda. 1996. Retrotransposons of rice involved in mutations induced by tissue culture. PNAS USA 93: 7783-7788 https://doi.org/10.1073/pnas.93.15.7783
  11. Kumar A. and J.L. Bennetzen. 1999. Plant Retrotransposons. Annu. Rev. 33: 479-532 https://doi.org/10.1146/annurev.genet.33.1.479
  12. Larkin P.J. and W.R. Scowcroft. 1981. Somaclonal variation a novel source of variability from cell cultures for plant improvement, Theor. Appl. Genet. 60: 197-214 https://doi.org/10.1007/BF02342540
  13. Marillonnet S. and S.R. Wessler. 1998. Extreme Structural Heterogeneity Among the Members of a Maize Retrotransposon Family. Genetics 150: 1245-1256
  14. Manninen, I. and A.H. Schulman. 1993. BARE-1, a copoa-like retroelement in barley (Hordeum vulgare L.). Plant Mol. Biol. 22: 829-846 https://doi.org/10.1007/BF00027369
  15. Miyao A., K. Tanaka, K. Murata, H. Sawaki, S. Takeda, K. Abe, Y. Shinozuka, K. Onosato and H. Hirochika. 2003. Target site specificity of the Tos17 retrotranposon shows a preference for insertion within genes and against insertion in retrotranposon-rich regions of the genome. Plant Cell 15: 1771-1780 https://doi.org/10.1105/tpc.012559
  16. Moore G., H. Lucas, N. Batty and R. Flavell. 1991. A family of retrotransposons and associated genomic variation in wheat. Genomics 10: 461-468 https://doi.org/10.1016/0888-7543(91)90333-A
  17. Murashige T. and F. Skoog. 1962. A Revised medium for Rapid Growth and Bio Assays with Tobacco Tissue Cultures. Physiol. Plant 15: 473-497 https://doi.org/10.1111/j.1399-3054.1962.tb08052.x
  18. Ruiz M.L., J. Rueda, M.I. Pelaez, F.J. Espono, M. Candela, A.M. Sendino and A.M. Vazquez. 1992. Somatic embryogenesis, plant regeneration and somaclonal variation in barley. Plant Cell, tissue and Organ Culture 28: 97-101 https://doi.org/10.1007/BF00039921
  19. Tai T.H. and S.D. Tanksley. 1990. A rapid and inexpensive method for isolation of total DNA from detydrated plant tissue. Plant Mol. Biol. Report 8(4): 297-303 https://doi.org/10.1007/BF02668766
  20. Vicient C.M., A. Suoniemi, K.A. Jonsson, J. Tanskanen, A. Beharav, E. Nevo and A.H. Schulman. 1999. Retrotransposon BARE-1 and Its Role in Genome Evolution in the Genus Hordeum. Plant Cell 11: 1769-1784 https://doi.org/10.1105/tpc.11.9.1769
  21. Wang S., N. Liu, K. Peng and Q. Zhang. 1999. The distribution and copy number of copia-like retrotransposons in rice (Oryza sativa L.) and their implications in the organization and evolution of the rice genome. PNAS USA 96: 6824-6828 https://doi.org/10.1073/pnas.96.12.6824
  22. Xie Q.J., M.C. Rush and S.D. Linscombe. 1996. Inheritance of homozygous somaclonal variation in rice. Crop Sci. 36: 1491-1495 https://doi.org/10.2135/cropsci1996.0011183X003600060013x
  23. Yamazaki M., K. Tsugawa, A. Miyao and M. Yano. 2001. The rice retrotransposon Tos17 prefers low-copy-number sequences as integration targets. Mol. Genet. Genomics 265: 336-344 https://doi.org/10.1007/s004380000421
  24. Yi G.H., M.H. Nam, B.G. Oh, H.C. Choi, S.C. Kim, C.D. Han and J.K. Sohn. 1999. Activation of retrotransposon in plant variants derived from rice cell culture. Korean J. Breed. 31: 341-347