제주 자생 식물들에 대한 항비만 효능에 대한 연구

The Study on Anti-obesity Activity of the Wild Plants of Jeju Island

  • 박덕훈 (바이오스펙트럼(주) 생명과학연구소) ;
  • 정은선 (바이오스펙트럼(주) 생명과학연구소) ;
  • 이종성 (바이오스펙트럼(주) 생명과학연구소) ;
  • 정광선 (스킨큐어코스메틱(주)) ;
  • 김새봄 (바이오스펙트럼(주) 생명과학연구소) ;
  • 허성란 (바이오스펙트럼(주) 생명과학연구소)
  • 발행 : 2007.09.30

초록

본 연구에서는 제주도에서 자생하는 30여 종의 식물추출물에 대한 항비만 효능을 조사하였다. 항비만 효능은 in vitro oil red-O staining 방법을 이용하여 지방전구세포 3T3-L1에서 분화억제력을 측정하였다. 그 결과, 30여 종의 식물 중에서 약도라지, 호장근, 유근피 등을 포함한 6종의 식물이 지방전구세포 3T3-L1의 분화를 억제하였다. 지방전구세포의 분화를 억제하는 물질 중 유근피, 약쑥, 호장근, 후박 4종은 우수한 항산화 효능도 동시에 가지고 있음을 확인하였다. 이러한 결과를 통해, 본 실험에서 확보된 추출물이 항비만 물질로 사용될 수 있는 가능성을 확인하였다.

In this study, we investigated the anti-obesity activity of extracts collected from wild plants in Jeju island. The inhibitory effect of plant extracts on the differentiation of preadipocyte 3T3-L1 was examined by oil red-O staining. We found that extracts collected from 6 plants among 31 plants, namely, Aralia elata(Miq.) Seem, Polygonum multiflorum Thunberg, Artemisia asiatica, platycodon grandiflorum(Jacq.) A. Dc., Polygonum cuspidatum S. et Z., Magnolia obovata Thunb, significantly inhibited preadipocyte differentiation. Additionally, 4 plant extracts were also found to have antioxidant activities in DPPH radical scavenging assay. Taken together, these results show that 6 plant extracts suppress the differentiation of preadipocytes, suggesting the potential use of 6 plant extracts as anti-obesity agents.

키워드

참고문헌

  1. M. J. Devlin, S. Z. Yanovski, and G. T. Wilson, Obesity: what mental health professionals need to know, Am J Psychiatry, 157, 854 (2000) https://doi.org/10.1176/appi.ajp.157.6.854
  2. K. Fujioka, Management of obesity as a chronic disease: nonphannacologic, phannacologic, and surgical options, Obes. Res., 10, 116S (2002) https://doi.org/10.1038/oby.2002.204
  3. C. Weissman, Nutrition in the intensive care unit, Crit. Care, 3, R67 (1999) https://doi.org/10.1186/cc360
  4. T. H. Herdt, Rwninant adaptation to negative energy balance. Influences on the etiology of ketosis and fatty liver, Vet. Clin North Am Food Anim Pract., 16, 215 (2000) https://doi.org/10.1016/S0749-0720(15)30102-X
  5. S. Mandard, M. Muller, and S. Kersten, PPARa target genes, Cell. Mol. Life Sci., 61, 393 (2004) https://doi.org/10.1007/s00018-003-3216-3
  6. R. S. Padwal and S. R. Majumdar, Drug treatments for obesity: orlistat, sibutramine, and rimonabant, Lancet, 369, 71 (2007) https://doi.org/10.1016/S0140-6736(07)60033-6
  7. M. J. Chapman, Fibrates in 2003: therapeutic action in atherogenic dyslipidaemia and future perspectives, Atherosclerosis, 171, 1 (2003) https://doi.org/10.1016/S0021-9150(03)00156-4
  8. G. A Bray, Drug treatment of obesity, Rev. Endoer. Metab. Disord., 2, 403 (2001) https://doi.org/10.1023/A:1011808701117
  9. H. Green and M. Meuth, An established preadipose cell line and its differentiation in culture, Cell, 3, 127 (1974) https://doi.org/10.1016/0092-8674(74)90116-0
  10. P. M Spooner, S. S. Chernick, M. M. Garrison, and R. O. Scow, Development of lipoprotein lipase activity and accumulation of triacylglycerol in differentiating 3T3 - Ll adipocytes. Effects of prostaglandin F2, I-methyl-3-isobutylxanthine, prolactin, and insulin, J. BioI. Chem, 254, 1305 (1979)
  11. H. Green and O. Kehinde, Spontaneous changes leading to increased adipose conversion in 3T3 cells, Cell, 7, 105 (1976) https://doi.org/10.1016/0092-8674(76)90260-9
  12. R. Negrel, P. Grimaldi, and G. Ailhaud, Establishment of a preadipocyte clonal line from epidermal fat pad of ob/ob mouse that responds to insulin and to lipolytic hormones, Proc. Nat. Acnd. Sci., 75, 6054 (1978)
  13. G. Ailhaud, Adipose cell differentiation in culture, Mol. Cell. Biochem, 49, 17 (1982)
  14. B. C. Reed and M. D. Lane, Insulin receptor synthesis and turnover in differentiating 3T3-Ll preadipocytes, Proc. Natl. Acad. Sci., 77, 285 (1980)