DOI QR코드

DOI QR Code

적은 수의 거대 엽록체를 가진 핵 형질전환 식물체를 이용한 담배 엽록체 형질전환 빈도 제고

Enhancement of Chloroplast Transformation Frequency by Using Mesophyll Cells Containing a Few Enlarged Chloroplasts from Nuclear Transformed Plants in Tobacco

  • 정원중 (한국생명공학연구원 식물유전체연구센터) ;
  • 민성란 (한국생명공학연구원 식물유전체연구센터) ;
  • 유장렬 (한국생명공학연구원 식물유전체연구센터)
  • Jeong, Won-Joong (Plant Genome Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Min, Sung-Ran (Plant Genome Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB)) ;
  • Liu, Jang-R. (Plant Genome Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB))
  • 발행 : 2007.09.29

초록

엽록체 형질전환된 식물체를 얻으려면 먼저 세포수준에서 모든 엽록체가 형질전환되어야 하는데, 세포내에는 많은 수의 엽록체가 존재하므로, 엽록체 형질전환 벡터가 전이되어 형질전환된 엽록체는 선발배지에서 선택적으로 분열을 계속하고 형질전환되지 않은 엽록체들은 분열을 하지 못하게 되어, 결국 해당 세포내의 모든 엽록체가 형질전환된 상태에 이르게 된다. 따라서 만일 해당 세포내에 엽록체의 수가 적으면 그만큼 효율적으로 엽록체 형질전환을 할 수 있을 것이다. 본 연구에서는 담배의 FtsZ 유전자를 핵형질전환법으로 과잉 발현시킴으로써 엽록체의 분열이 저해되어 엽육세포내에 거대한 엽록체 3-5개를 가진 담배식물체의 엽육조직을 이용하여, 엽록체 형질전환을 한 결과, 엽록체 형질전환 빈도가 약 40% 증가되었다.

In the chloroplast transformation process, a chloroplast containing transformed chloroplast genome copies should be selected over wild-type chloroplasts on selection medium. It is more effective for a cell to become homoplasmic if the cell contains smaller number of chloroplasts. Therefore, to reduce the number of chloroplasts in mesophyll cells in tobacco, we overexpressed FtsZ to generate transgenic plants, of which mesophyll cell contained a few enlarged chloroplasts contrast to a wild-type mesophyll cell containing approximately 100 chloroplasts. It was demonstrated that transgenic leaf tissues comprising cells with a few enlarged chloroplasts gave rise to approximately 40% higher frequency of chloroplast-transformed adventitious shoots.

키워드

참고문헌

  1. Boynton JE, Gillham NW, Harris EH, Hosler JP, Johnson NI\, Jones AR, Randolph-Anderson BL, Robertson D, Klein TM, Shark KB, and Sanford JC (1988) Chloroplast transformation in Chlamydomonas with high velocity microprojectiles. Science 240: 1534-1538 https://doi.org/10.1126/science.2897716
  2. Daniell H (2002) Molecular strategies for gene containment in transgenic crops. Nat Biotechnol 20: 581-586 https://doi.org/10.1038/nbt0602-581
  3. Daniell H, Khan MS, Allison L (2002) Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci 7: 84-91 https://doi.org/10.1016/S1360-1385(01)02193-8
  4. De Cosa B, Moar W, Lee SB, Miller M, Daniell H (2001) Overexpression of the Bt cry2Aa2 operon in chloroplasts leads to formation of insecticidal crystals. Nat Biotechnol 19: 71-74 https://doi.org/10.1038/83559
  5. Dufourmantel N, Pelissier B, Garcon F, Peltier G, Ferullo J-M, and Tissot G. (2004) Generation of fertile transplastomic soybean. Plant Mol Biol 55: 479-489 https://doi.org/10.1007/s11103-004-0192-4
  6. Guda G, Lee SB, Daniell H (2000) Stable expression of a biodegradable protein-based polymer in tobacco chloroplasts. Plant Cell Rep 19: 257-262 https://doi.org/10.1007/s002990050008
  7. Jeong WJ, Jeong SW, Min SR, Yoo OJ, Uu JR (2002a) Growth retardation of plants transformed by overexpression of NtFtsZ1-2 in tobacco. J Plant BioI. 45: 107-111 https://doi.org/10.1007/BF03030426
  8. Jeong WJ, Jeong SW, Woo JW, Choi DW, Liu JR (2004) Dicistronic expression of the green fluorescent protein and antibiotic resistance genes in the plastid for tracking and selecting plastid-transformed cells in tobacco. Plant Cell Rep 22: 747-751 https://doi.org/10.1007/s00299-003-0740-4
  9. Jeong WJ, Park YI, Suh KH, Raven JA, Yoo OJ, Liu JR (2002b) A large population of small chloroplasts in tobacco leaf cells allows more effective chloroplast movement than a few enlarged chloroplasts. Plant Physiol 129: 112-121 https://doi.org/10.1104/pp.000588
  10. Kumar S, Dhingra A, and Daniell H. (2004) Stable transformation of the cotton plastid genome and maternal inheritance of transgenes. Plant Mol Biol 56: 203-216 https://doi.org/10.1007/s11103-004-2907-y
  11. Lee SB, Kwon HB, Kwon SJ, Park SC, Jeong MJ, Han SE, Byun MO, Daniell H (2003) Accumulation of trehalose within transgenic chloroplasts confers drought tolerance. Mol Breeding 11: 1-13 https://doi.org/10.1023/A:1022100404542
  12. Okumura S, Sawada M, Park YW, Hayashi T, Shimamura M, Takase H, Tomizawa K (2006) Transformation of poplar (Populus alba) plastids and expression of foreign proteins in tree chloroplasts. Transgenic Res 15: 637- 646 https://doi.org/10.1007/s11248-006-9009-3
  13. Ruf S, Hermann M, Berger I, Carrer H, Bock R (2001) Stable genetic transformation of tomato plastids and expression of a foreign protein in fruit. Nat Biotechnol 19: 870-875 https://doi.org/10.1038/nbt0901-870
  14. Sidorov VA, Kasten D, Pang SZ, Hajdukiewicz PTJ, Staub JM, Nehra NS (1999) Stable chloroplast transformation in potato: use of green fluorescent protein as a plastid marker. Plant J 19: 209-216 https://doi.org/10.1046/j.1365-313X.1999.00508.x
  15. Sikdar SR, Serino G, Chaudhuri S, Maliga P (1998) Plastid transformation in AraNdopsis thaliana. Plant Cell Rep 18: 20-24 https://doi.org/10.1007/s002990050525
  16. Staub JM, Garcia B, Graves J, Hajdukiewicz PTJ, Hunter P, Nehra N, Paradkar V, Schlittler M, Carroll JA, Spatola L, Ward D, Ye G, Rusell DA (2000) High-protein production of a human therapeutic protein in tobacco chloroplasts. Nat Biotechnol 18: 333-338 https://doi.org/10.1038/73796
  17. Svab Z, Hajdukiewicz P, Maliga P (1990) Stable transformation of plastids in higher plants. Proc Natl Acad Sci USA 87: 8526-8530
  18. Svab Z, Maliga P (1993) High-frequency plastid transformation in tobacco by selection for a chimeric aadA gene. Proc Natl Acad Sci USA 90: 913-917
  19. Zubko MK, Zubko EI, van Zuilen K, Meyer P, and Day A (2004) Stable transformation of petunia plastids. Transgenic Res 13: 523-530 https://doi.org/10.1007/s11248-004-2374-x

피인용 문헌

  1. Genetic Discrimination of Catharanthus roseus Cultivars by Pyrolysis Mass Spectrometry vol.52, pp.5, 2009, https://doi.org/10.1007/s12374-009-9059-1
  2. Production of stable chloroplast-transformed plants in potato (Solanum tuberosum L.) vol.38, pp.1, 2011, https://doi.org/10.5010/JPB.2011.38.1.042