DOI QR코드

DOI QR Code

Optimization of Physical Conditions for Caviar Analog Preparation Using Calcium-alginate Gel Capsules

  • Ji, Cheong-Il (Gangneung Marine Bio Foundation) ;
  • Cho, Sueng-Mock (Korea Food Research Institute) ;
  • Yun, Young-Soo (National Fisheries Products Quality Inspection Service) ;
  • Kim, Seon-Bong (Department of Food Science and Technology/Institute of Seafood Science, Pukyong National University)
  • Published : 2007.09.30

Abstract

High prices, overfishing, and contamination have limited the availability of natural caviar as a food product. We attempted to apply encapsulation by calcium-alginate gel membranes to caviar analog preparation in an effort to produce a high-quality replacement for natural caviar. Physical conditions of stirring speed $(X_1,\;rpm)$ and gelation time $(X_2,\;min)$ as the independent variables for gelation were optimized by response surface methodology. Sphericity $(Y_1,\;%)$, diameter $(Y_2,\;mm)$, membrane thickness $(Y_3,\;mm)$, rupture strength $(Y_4,\;g)$, and rupturing deformation $(Y_5,\;mm)$ were used as the dependent variables to compare characteristics of the capsules for caviar analogs with natural caviar. The values of the independent variables as evaluated by multiple response optimization were $X_1=-0.1271 (278 rpm) and $X_2=0.4436$ (12.2 min), respectively. Predicted values of the four dependent variables were $Y_1=97.7%,\;Y_2=2.97mm,\;Y_4=1,465g,\;and\;Y_5=1.15mm$. Membrane thickness $(Y_3)$ was eliminated from the dependent variables for multiple response optimization because it could not be measured with an image analyzer. The experimental values prepared under the optimal conditions for verification nearly coincided with the predicted values and satisfied the conditions of natural caviar.

Keywords

References

  1. Blandino, A, M. Macias and D. Cantero. 1999. Formation of calcium alginate gel capsules: Influence of sodium alginate and $CaCl_2$ concentration on gelation kinetics. J. Biosci. Bioeng., 88, 686-689 https://doi.org/10.1016/S1389-1723(00)87103-0
  2. Blandino, A, M. Macias and D. Cantero. 2001. Immobilization of glucose oxidase within calcium alginate gel capsules. Process Biochem., 36, 601-606 https://doi.org/10.1016/S0032-9592(00)00240-5
  3. Box, G.E.P. and K.B. Wilson. 1951. On the experimental attainment of optimum conditions. J. R. Stat. Soc. Ser. B, 13, 1-45
  4. Chai, Y, L.H. Mei, G.L. Wu, D.Q. Lin and S.J. Yao. 2004. Gelation conditions and transport properties of hollow calcium alginate capsules. Biotechnol. Bioeng., 87, 228-233 https://doi.org/10.1002/bit.20144
  5. Chang, C.P. and T. Dobashi. 2003. Preparation of alginate complex capsules containing eucalyptus essential oil and its controlled release. Colloids Surf. B, 32, 257-262 https://doi.org/10.1016/j.colsurfb.2003.07.002
  6. Dembczynski, R. and T. Jankowski. 2002. Growth characteristics and acidifying activity of Lactobacillus rhamnosus in alginate/starch liquid-core capsules. Enzyme Microb. Technol., 31, 111-115 https://doi.org/10.1016/S0141-0229(02)00080-7
  7. Gaserod, O., A Sannes and G. Skjak-Brrek. 1999. Microcapsules of alginate-chitosan. II. A study of capsule stability and permeability. Biomaterials, 20, 773-783 https://doi.org/10.1016/S0142-9612(98)00230-0
  8. Grant, G.T., E.F. Morris, D.A Rees, P.J.C. Smith and D. Thorn. 1973. Biological interactions between polysaccharides and divalent cations: the egg-box model. Eur. Biochem. Soc. L., 32, 195-200 https://doi.org/10.1016/0014-5793(73)80770-7
  9. Hari, P.R., T. Chandy and C.P. Sharma. 1996. Chitosan/calcium alginate microcapsules for intestinal delivery of nitrofurantoin. J. Microencapsul., 13, 319-329 https://doi.org/10.3109/02652049609026019
  10. Miuraa, K., N. Kimuraa, H. Suzukia, Y. Miyashitab and Y. Nishiob. 1999. Thermal and viscoelastic properties of alginate/poly(vinyl alcohol) blends cross-linked with calcium tetraborate. Carbohyd. Polym., 39, 139-144 https://doi.org/10.1016/S0144-8617(98)00162-3
  11. Morre, M.L., L. Maggi, D. Vigo, A Galli, V. Bornaghi, G. Maffeo and U. Conte. 2000. Controlled release of swine semen encapsulated in calcium alginate beads. Biomaterials, 21, 1493-1498 https://doi.org/10.1016/S0142-9612(00)00035-1
  12. Patel, A.V., I. Puch, G. Mix-Wagner and K.D. Vorlop. 2002. A novel encapsulation technique for the production of artificial seeds. Plant Cell Rep., 19, 868-874 https://doi.org/10.1007/s002990000223
  13. Power, L. and M.N. Voigt. 1990. Process for preparing lumpfish roe caviar from non-cured roe. In Advances in fisheries and biotechnology for increased profitability, M.N. Voigt and J.R. Botta Eds., Technomic Publishing Company Inc., Pennsylvania, USA, 111-120
  14. Skjak-Bnek, G., H. Grasdalen and O. Smidsrod. 1989. Inhomogeneous polysaccharide ionic gels. Carbohyd. Polym., 10, 31-54 https://doi.org/10.1016/0144-8617(89)90030-1
  15. Srnidsrod, O. and A Haug. 1972. Dependence upon gelsol state of the ion-exchange properties of alginates. Acta Chem. Scand., 26, 2063-2074 https://doi.org/10.3891/acta.chem.scand.26-2063
  16. Time. 2002. The caviar crisis: Overfishing of beluga, which produce the best caviar, has created an environmental row over the tasty roe. Time, 160, 48-50
  17. Wade, E.M. and J.G. Fadel. 1997. Optimization of caviar and meat production from white sturgeon (Acipenser transmontanus). Agr. Syst., 54, 1-21 https://doi.org/10.1016/S0308-521X(96)00051-0
  18. Williot, P., L. Sabeau, L. Gessner, G. Arlati, P. Bronzi, T. Gulyas and P. Berni. 2001. Sturgeon farming in western europe: recent developments and perspectives. Aquat. Living Resour., 14, 367-374 https://doi.org/10.1016/S0990-7440(01)01136-6

Cited by

  1. Production optimization of flying fish roe analogs using calcium alginate hydrogel beads vol.19, pp.7, 2007, https://doi.org/10.1186/s41240-016-0031-y