초록
시계열자료를 분석하는데 있어 중요한 목적 중에 하나가 미래값에 대한 예측이다. 일반적으로 자기회귀이동평균모형에서는 백색잡음이 정규분포를 따른다는 가정 하에서 모수의 추론과 예측 및 예측구간의 추정이 이루어지고 있다. 그러나 자료가 이러한 가정을 만족하지 않는 경우, 자료를 가정에 맞게 변환시킨 후 분석하는 방법을 생각해 볼 수 있다. 이 논문에서는 변환된 자료를 분석하여 얻은 결과를 이용하여 본래의 척도에서의 미래값에 대한 예측구간을 추정하는 문제에 대해 알아본다. 제안하는 방법에서는 먼저 적절한 변환을 이용하여 자료를 정규가정을 만족하도록 변환시키고 변환된 자료를 이용하여 미래값에 대한 예측구간을 추정한 후, 역변환을 이용하여 예측구간을 추정한다. 이 논문에서는 시계열분석에서 모델링이 상대적으로 어려운 왜도의 문제를 해결하기 위해 Yeo-Johnson 변환을 중심으로 한 방법론을 소개한다. 모의실험 결과 제안된 방법에 의한 단측예측구간의 포함확률이 변환을 사용하지 않은 구간보다 명목수준에 가까운 것을 확인하였다.
One of main aspects of time series analysis is to forecast future values of series based on values up to a given time. The prediction interval for future values is usually obtained under the normality assumption. When the assumption is seriously violated, a transformation of data may permit the valid use of the normal theory. We investigate the prediction problem for future values in the original scale when transformations are applied in ARMA models. In this paper, we introduce the methodology based on Yeo-Johnson transformation to solve the problem of skewed data whose modelling is relatively difficult in the analysis of time series. Simulation studies show that the coverage probabilities of proposed intervals are closer to the nominal level than those of usual intervals.