Abstract
In this study a model-based diagnostic method using the Neural Network was proposed for PW206C turbo shaft engine and performance model was developed by SIMULINK. Fault and test database to build the NN was obtained at various off-design operating range such as flight altitude, flight Mach number and gas generator rotational speed variation. According to the fault detection analysis results, it was confirmed that the proposed fault detection method could find well the fault of compressor, compressor turbine and power turbine at on-design point as well as off-design point conditions.
본 연구에서는 모델 기반(Model-Based) 성능진단에 신경회로망을 적용하였고, SIMULINK를 이용하여 PW206C 터보축 엔진의 모델링을 수행하였다. 비행 고도, 비행 마하수, 가스발생기 회전수에 따른 다양한 운용영역의 성능데이터를 base로 하여 압축기, 압축기터빈, 동력터빈의 성능 저하에 대한 학습데이터를 획득하고 역전파(Back Propagation Network)를 이용하여 훈련하였다. 설계점 및 탈설계 영역에서 압축기, 압축기터빈, 동력터빈의 단일 손상 탐지를 수행한 결과 손상된 구성품을 비교적 잘 탐지함을 확인할 수 있었다.