복합 유도전류-누설자속법과 고밀도 홀센서배열에 의한 니켈 코팅 인코넬 시험편의 비파괴검사

NDT of a Nickel Coated Inconel Specimen Using by the Complex Induced Current - Magnetic Flux Leakage Method and Linearly Integrated Hall Sensor Array

  • 발행 : 2007.10.30

초록

전자기적인 방법을 이용한 비파괴검사는 금속의 표면 및 표면 근방의 균열을 탐상하는데 매우 유용하다. 그러나, 강자성체, 상자성체 또는 강자성체와 상자성체 조직이 혼재되는 경우가 발생하여 기존의 비파괴검사법에 의하면 탐상신호의 해석에 어려움이 많다. 또한, 경우에 따라서는 국부적인 자성체의 존재를 유사결함으로 오해 또는 큰 결함을 국부적인 자성체의 존재로 오해할 수 있다. 한편, 원자력 발전소의 구조물 소재로 중요하게 사용되고 있는 Inconel은 결함 발생시 Nickel로 피막 처리한 후 연장 사용하게 된다. 이때, 상자성체인 Inconel과 강자성체인 Nickel의 혼재에 의하여 결함을 탐상하기 곤란하다. 본 연구에서는 Inconel 부재, Nickel 코팅부위 및 경계면에 존재하는 결함을 탐상하기 위한 방법으로써, 복합 유도전류-누설자속법과 고밀도 홀센서 배열을 이용한 라인스캔형 자기카메라를 제안하고, 탐상 가능 결함의 깊이 및 정량 평가 가능성에 대하여 보고한다.

Nondestructive testing (NDT) by using the electromagnetic methods are useful for detecting cracks on the surface and subsurface of the metal. However, when the material contains both ferromagnetic and paramagnetic materials, it is difficult for NDT to detect and analyze cracks using this method. In addition the existence of a partial ferromagnetic material can be incorrectly characterized as a crack in the several cases. On the other hand a large crack has sometimes been misunderstood as a partially magnetized region. Inconel 600 is an important material in atomic energy plant. A nickel film is coated when a crack a appears on an Inconel substrate. Cracks are difficult to detect on the combined material of an Inconel substrate with a nickel film, which are paramagnetic and ferromagnetic material respectively. In this paper, a scan type magnetic camera, which uses a complex induced current-magnetic flux leakage (CIC-MFL) method as a magnetic source and a linearly integrated Hall sensor array (LIHaS) on a wafer as the magnetic sensors, was examined for its ability to detect cracks on the combined material. The evaluation probability of a crack is discussed. In addition the detection probability of the minimum depth was reported.

키워드

참고문헌

  1. U. G. Goranson, 'Damage tolerance facts and fiction,' 17th Symposium of the International Committee on Aeronautical Fatigue, Vol. 1, pp. 2-105, (1993)
  2. D. Hwang, 'Damage tolerance design and prediction of fatigue life in aircraft structure,' KSME Int. Journal Vol. 35, pp. 468-480, (1995)
  3. J. Hwang, J. Jun and J. Lee, 'Scan type magnetic camera images with a high spatial resolution for NDT obtained by using a linearly integrated hall sensor array,' Proceedings of IEEE International Workshop on Imaging Systems and Techniques, pp. 1-6, (2007)
  4. J. Lee, W. Choe, M. Kim, D. Kim and M. Kang, 'Magnetic flux density apparatus for, E.G., Detecting an internal crack of a metal or a shape of the metal,' US Patents 6,683,452 B2., (2004)
  5. J. Lee and J. Hwang, 'The detection probability improvement of the far-side crack on the high lift-off using the magnetic camera,' Int. J. of Mod. Phys. B 20 Nos. 25, 26, & 27 pp. 4631-4636, (2006) https://doi.org/10.1142/S021797920604180X
  6. J. Lee and J. Hwang, 'The QNDE using image processing of the magnetic camera)' Int. J. of Mod. Phys. B 20, Nos. 25, 26, & 27 pp. 4625-30, (2006) https://doi.org/10.1142/S0217979206041793
  7. J. Lee, J. Hwang, S. Choi and J. Lim, 'Detection probability improvement for nondestructive evaluation using a magnetic camera)' Key Eng. Mater. pp. 306-308, 241-6, (2006)
  8. S. Choi, J. Hwang, J. Jun, J. Lee and C. Kim, 'Improvement of crack detection probability by using magnetic camera and image processing,' Key Engineering Materials, Vols. 353-358, pp. 2375-2378, (2007) https://doi.org/10.4028/www.scientific.net/KEM.353-358.353
  9. J. Jun, J. Hwang, K. Kim, K. Ogawa and J. Lee, 'Development of signal processing circuit of a magnetic camera for the NDT of a paramagnetic material,' Key Engineering Materials, Vols. 353-358, pp. 2379-2382, (2007) https://doi.org/10.4028/www.scientific.net/KEM.353-358.353