DOI QR코드

DOI QR Code

Aminolyses of Y-substituted Phenyl 2-Furoates and Cinnamates: Effect of Nonleaving Group Substituent on Reactivity and Mechanism

  • Um, Ik-Hwan (Division of Nano Sciences and Department of Chemistry, Ewha Womans University) ;
  • Akhtar, Kalsoom (Division of Nano Sciences and Department of Chemistry, Ewha Womans University) ;
  • Park, Youn-Min (Division of Nano Sciences and Department of Chemistry, Ewha Womans University) ;
  • Khan, Sher Bahadar (Division of Nano Sciences and Department of Chemistry, Ewha Womans University)
  • Published : 2007.08.20

Abstract

Second-order rate constants (kN) have been determined spectrophotometrically for reactions of Y-substituted phenyl 2-furoates (1a-h) with piperidine and morpholine in 80 mol % H2O/20 mol % DMSO at 25.0 ± 0.1 oC. The Brønsted-type plot exhibits a downward curvature for the reactions with strongly basic piperidine but is linear for the reactions with weakly basic morpholine. The slope of the curved Brønsted-type plot changes from -1.25 to ?0.28 as the pKa of the conjugate acid of the leaving aryloxides decreases. The pKa at the center of the Brønsted curvature, defined as pKa°, was determined to be 6.4. The aminolysis of 1a-h has been concluded to proceed through a stepwise mechanism on the basis of the curved Brønsted-type plot. The reactions of Ysubstituted phenyl cinnamates (2a-g) with piperidine resulted in a curved Brønsted-type plot with a pKa° values of 6.4. However, the curved Brønsted-type plot has been suggested to be not due to a change in the RDS but due to a normal Hammond effect of a concerted mechanism, since the Brønsted-type plot for the corresponding reactions with morpholine results in also a curved Brønsted-type plot with a pKa° values of 6.1. The furoates with a basic leaving group (i.e., 1b-g) are less reactive than the corresponding cinnamates (i.e., 2b-g). The k2/ k-1 ratios for the reactions of 1b-h are much smaller than unity, which has been suggested to be responsible for their low reactivity.

Keywords

References

  1. Jencks, W. P. Chem. Rev. 1985, 85, 511-527 https://doi.org/10.1021/cr00070a001
  2. Castro, E. A. Chem. Rev. 1999, 99, 3505-3524 https://doi.org/10.1021/cr990001d
  3. Page, M. I.; Williams, A. Organic and Bio-organic Mechanisms Longman: Harlow, U.K., 1997; Chapter 7
  4. Castro, E. A.; Aliaga, M.; Gazitua, M.; Santos, J. G. Tetrahedron 2006, 62, 4863-4869 https://doi.org/10.1016/j.tet.2006.03.013
  5. Castro, E. A.; Campodonico, P. R.; Contreras, R.; Fuentealba, P.; Santos, J. G.; Leis, J. R.; Garcia-Rio, L.; Saez, J. A.; Domingo, L. R. Tetrahedron 2006, 62, 2555-2562 https://doi.org/10.1016/j.tet.2005.12.044
  6. Castro, E. A.; Gazitua, M.; Santos, J. G. J. Org. Chem. 2005, 70, 8088-8092 https://doi.org/10.1021/jo051168b
  7. Campodonico, P. R.; Fuentealba, P.; Castro, E. A.; Santos, J. G.; Contreras, R. J. Org. Chem. 2005, 70, 1754-1760 https://doi.org/10.1021/jo048127k
  8. Castro, E. A.; Aliaga, M.; Evangelisti, S.; Santos, J. G. J. Org. Chem. 2004, 69, 2411-2416 https://doi.org/10.1021/jo035451r
  9. Sung, D. D.; Koo, I. S.; Yang, K. Y.; Lee, I. Chem. Phys. Lett. 2006, 432, 426-430 https://doi.org/10.1016/j.cplett.2006.11.002
  10. Sung, D. D.; Koo, I. S.; Yang, K. Y.; Lee, I. Chem. Phys. Lett. 2006, 426, 280-284 https://doi.org/10.1016/j.cplett.2006.06.015
  11. Oh, H. K.; Oh, J. Y.; Sung, D. D.; Lee, I. J. Org. Chem. 2005, 70, 5624-5629 https://doi.org/10.1021/jo050606b
  12. Oh, H. K.; Jin, Y. C.; Sung, D. D.; Lee, I. Org. Biomol. Chem. 2005, 3, 1240-1244 https://doi.org/10.1039/b500251f
  13. Park, Y. H.; Lee, O. S.; Koo, I. S.; Yang, K. Y.; Lee, I. Bull. Korean Chem. Soc. 2006, 27, 1865-1868 https://doi.org/10.5012/bkcs.2006.27.11.1865
  14. Hwang, J. Y.; Yang, K. Y.; Koo, I. S.; Sung, D. D.; Lee, I. Bull. Korean Chem. Soc. 2006, 27, 733-738 https://doi.org/10.5012/bkcs.2006.27.5.733
  15. Baxter, N. J.; Rigoreau, L. J. M.; Laws, A. P.; Page, M. I. J. Am. Chem. Soc. 2000, 122, 3375-3385 https://doi.org/10.1021/ja994293b
  16. Spillane, W. J.; McGrath, P.; Brack, C.; O'yrne, A. B. J. Org. Chem. 2001, 66, 6313-6316 https://doi.org/10.1021/jo015691b
  17. Gordon, I. M.; Maskill, H.; Ruasse, M. F. Chem. Soc. Rev. 1989, 18, 123-151 https://doi.org/10.1039/cs9891800123
  18. Um, I. H.; Akhtar, K.; Shin, Y. H.; Han, J. Y. J. Org. Chem. 2007, 72, 3823-3829 https://doi.org/10.1021/jo070171n
  19. Um, I. H.; Shin, Y. H.; Han, J. Y.; Mishima, M. J. Org. Chem. 2006, 71, 7715-7720 https://doi.org/10.1021/jo061308x
  20. Um, I. H.; Jeon, S. E.; Seok, J. A. Chem. Eur. J. 2006, 12, 1237-1243 https://doi.org/10.1002/chem.200500647
  21. Um, I. H.; Kim, E. Y.; Park, H. R.; Jeon, S. E. J. Org. Chem. 2006, 71, 2302-2306 https://doi.org/10.1021/jo052417z
  22. Um, I. H.; Lee, J. Y.; Lee, H. W.; Nagano, Y.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2005, 70, 4980-4987 https://doi.org/10.1021/jo050172k
  23. Um, I. H.; Chun, S. M.; Bae, S. K. Bull. Korean Chem. Soc. 2005, 26, 457-460 https://doi.org/10.5012/bkcs.2005.26.3.457
  24. Gresser, M. J.; Jencks, W. P. J. Am. Chem. Soc. 1977, 99, 6970-6980 https://doi.org/10.1021/ja00463a033
  25. Castro, E. A.; Santander, C. L. J. Org. Chem. 1985, 50, 3595-3600 https://doi.org/10.1021/jo00219a029
  26. Castro, E. A.; Valdivia, J. L. J. Org. Chem. 1986, 51, 1668-1672 https://doi.org/10.1021/jo00360a007
  27. Castro, E. A.; Steinfort, G. B. J. Chem. Soc., Perkin Trans. 2 1983, 453-457
  28. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 7788-7791 https://doi.org/10.1021/jo051052f
  29. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Phys. Org. Chem. 2006, 19, 683-688 https://doi.org/10.1002/poc.1116
  30. Um, I. H.; Hwang, S. J.; Baek, M. H.; Park, E. J. J. Org. Chem. 2006, 71, 9191-9197 https://doi.org/10.1021/jo061682x
  31. Um, I. H.; Kim, K. H.; Park, H. R.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3937-3942 https://doi.org/10.1021/jo049694a
  32. Um, I. H.; Min, J. S.; Ahn, J. A.; Hahn, H. J. J. Org. Chem. 2000, 65, 5659-5663 https://doi.org/10.1021/jo000482x
  33. Um, I. H.; Hong, J. Y.; Seok, J. A. J. Org. Chem. 2005, 70, 1438-1444 https://doi.org/10.1021/jo048227q
  34. Um, I. H.; Chun, S. M.; Chae, O. M.; Fujio, M.; Tsuno, Y. J. Org. Chem. 2004, 69, 3166-3172 https://doi.org/10.1021/jo049812u
  35. Um, I. H.; Hong, J. Y.; Kim, J. J.; Chae, O. M.; Bae, S. K. J. Org. Chem. 2003, 68, 5180-5185 https://doi.org/10.1021/jo034190i
  36. Um, I. H.; Lee, J. Y.; Ko, S. H.; Bae, S. K. J. Org. Chem. 2006, 71, 5800-5803 https://doi.org/10.1021/jo0606958
  37. Castro, E. A.; Cubillos, M.; Santos, J. G.; Umana, M. I. J. Org. Chem. 1997, 62, 2512-2517 https://doi.org/10.1021/jo961921o
  38. Castro, E. A.; Santos, J. G.; Tellez, J.; Umana, M. I. J. Org. Chem. 1997, 62, 6568-6574 https://doi.org/10.1021/jo970624w
  39. Song, B. D.; Jencks, W. P. J. Am. Chem. Soc. 1989, 111, 8479-8484 https://doi.org/10.1021/ja00204a022
  40. Castro, E. A.; Bessolo, J.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2003, 68, 8157-8161 https://doi.org/10.1021/jo0348120
  41. Castro, E. A.; Vivanco, M.; Aguayo, R.; Santos, J. G. J. Org. Chem. 2004, 69, 5399-5404 https://doi.org/10.1021/jo049260f
  42. Castro, E. A.; Aguayo, R.; Bessolo, J.; Santos, J. G. J. Org. Chem. 2005, 70, 3530-3536 https://doi.org/10.1021/jo050119w
  43. Um, I. H.; Park, Y. M.; Fujio, M.; Mishima, M.; Tsuno, Y. J. Org. Chem. 2007, 72, 4816-4821 https://doi.org/10.1021/jo0705061
  44. Albert, A. Physical Methods in Heterocyclic Chemistry Katritzky, A. R., Ed.; Acadmic Press: London, 1963; vol. 1, p 44
  45. Jencks, W. P.; Regenstein, J. Handbook of Biochemistry, 2nd ed; Chemical Rubber Publishing Co.: Cleveland, OH, 1970; p J-193

Cited by

  1. Kinetic and computational evidence for an intermediate in the hydrolysis of sulfonate esters vol.10, pp.40, 2012, https://doi.org/10.1039/c2ob25699a
  2. Reaction mechanisms : Part (iii) Polar reactions vol.104, pp.1460-4779, 2008, https://doi.org/10.1039/b719310f
  3. Aminolysis of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl Benzoates: Effect of ortho-Nitro Group on Reactivity and Mechanism vol.29, pp.10, 2007, https://doi.org/10.5012/bkcs.2008.29.10.1915
  4. Aminolysis of 3,4-Dinitrophenyl Cinnamate and Benzoate 2: Activation Parameters and Transition-State Structures vol.29, pp.3, 2008, https://doi.org/10.5012/bkcs.2008.29.3.575
  5. Kinetics and Mechanism of Azidolysis of Y-Substituted Phenyl Benzoates vol.29, pp.3, 2007, https://doi.org/10.5012/bkcs.2008.29.3.580
  6. Aminolysis of Y-Substituted Phenyl 2-Thiophenecarboxylates and 2-Furoates: Effect of Modification of Nonleaving Group from 2-Furoyl to 2-Thiophenecarbonyl on Reactivity and Mechanism vol.29, pp.3, 2007, https://doi.org/10.5012/bkcs.2008.29.3.585
  7. Aminolyses of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Furoates: Effect of ortho-Substituent on Reactivity and Mechanism vol.29, pp.4, 2007, https://doi.org/10.5012/bkcs.2008.29.4.772
  8. Aminolysis of 2,4-Dinitrophenyl 2-Furoate and 2-Thiophenecarboxylate: Effect of Modification of Nonleaving Group from Furoyl to Thiophenecarbonyl on Reactivity and Mechanism vol.29, pp.7, 2007, https://doi.org/10.5012/bkcs.2008.29.7.1359
  9. Aminolysis of 2,4-Dinitrophenyl and 3,4-Dinitrophenyl 2-Thiophenecarboxylates: Effect of ortho-Nitro Group on Reactivity and Mechanism vol.29, pp.8, 2008, https://doi.org/10.5012/bkcs.2008.29.8.1459