DOI QR코드

DOI QR Code

Adenosine Kinase Inhibitor Design Based on Pharmacophore Modeling

  • Lee, Yun-O (Department of Biochemistry, Division of Applied Life Science, Environmental Biotechnology National Core Research Center (EB-NCRC), Gyeongsang National University) ;
  • Bharatham, Nagakumar (Department of Biochemistry, Division of Applied Life Science, Environmental Biotechnology National Core Research Center (EB-NCRC), Gyeongsang National University) ;
  • Bharatham, Kavitha (Department of Biochemistry, Division of Applied Life Science, Environmental Biotechnology National Core Research Center (EB-NCRC), Gyeongsang National University) ;
  • Lee, Keun-Woo (Department of Biochemistry, Division of Applied Life Science, Environmental Biotechnology National Core Research Center (EB-NCRC), Gyeongsang National University)
  • Published : 2007.04.20

Abstract

Adenosine kinase (AK) is a ubiquitous intracellular enzyme, which catalyzes the phosphorylation of adenosine (ADO) to adenosine monophosphate (AMP). AK inhibitors have therapeutic potential as analgesic and antiinflammatory agents. A chemical feature based pharmacophore model has been generated from known AK inhibitors (26 training set compounds) by HypoGen module implemented in CATALYST software. The top ranked hypothesis (Hypo1) contained four features of two hydrogen-bond acceptors (HBA) and two hydrophobic aromatics (Z). Hypo1 was validated by 124 test set molecules with a correlation coefficient of 0.905 between experimental and estimated activity. It was also validated by CatScramble method. Thus, the Hypo1 was exploited for searching new lead compounds over 238,819 chemical compounds in NCI database and then the selected compounds were screened based on restriction estimated activity and Lipinski's rules to evaluate their drug-like properties. Finally we could obtain 72 new lead candidates and the two best compound structures from them were posted.

Keywords

References

  1. Williams, M.; Jarvis, M. Biochem. Pharmacol. 2000, 59, 1173 https://doi.org/10.1016/S0006-2952(99)00341-X
  2. Ralevic, V.; Burnstock, G. Pharmacol. Rev. 1998, 50, 413
  3. Fredholm, B. B.; IJzerman, A. P.; Jacobson, K. A.; Klotz, K. N.; Linden, J. Pharmacol. Rev. 2001, 53, 527
  4. Kim, S.; Jacobson, K. A.; Kim, H. S. Bull. Korean Chem. Soc. 2005, 26, 1503 https://doi.org/10.5012/bkcs.2005.26.10.1503
  5. Williams, M.; Burnstock, G. In Purinergic Approaches in Experimental Therapeutics; Jacobson, K. A., Jarvis, M. F., Eds.; Wiley-liss: New York, 1997; p 3
  6. Jarvis, M. F. Rev. Analgesia 2003, 7, 1 https://doi.org/10.3727/000000003783993035
  7. Kowaluk, E. A.; Bhagwat, S. S.; Jarvis, M. F. Curr. Pharm. Des. 1998, 4, 403
  8. Arch, J. R. S.; Newsholme, E. A. Essays Biochem. 1978, 14, 82
  9. Brake, A.; Schumacher, M.; Julius, D. Chem. Biol. 1996, 3, 229 https://doi.org/10.1016/S1074-5521(96)90101-5
  10. CATALYST 4.10; Accelrys, Inc.: San Diego, CA, 2005, http:// www.accelrys.com
  11. Samuel, T.; Jayashree, S.; Allister, J. M.; Jon, S. J. Chem. Inf. Model. 2006, 46, 728 https://doi.org/10.1021/ci050410c
  12. The MDL ISIS/base is available from MDL Information Systems Inc.: San Leandro, CA, http://www.mdl.com
  13. Smellie, A.; Teig, S.; Towbin, P. J. Comp. Chem. 1995, 16, 171 https://doi.org/10.1002/jcc.540160205
  14. Cowart, M.; Lee, C. H.; Gfesser, G. A.; Bayburt, E. K.; Bhagwat, S. S.; Stewart, A. O.; Yu, H.; Kohlhaas, K. L.; McGaraughty, S.; Wismer, C. T.; Mikusa, J.; Zhu, C.; Alexander, K. M.; Jarvis, M. F.; Kowaluk, E. A. Biorg. Med. Chem. Lett. 2001, 11, 83 https://doi.org/10.1016/S0960-894X(00)00602-8
  15. Ugarkar, B. G.; Castellino, A. J.; DaRe, J. S.; Ramirez-Weinhouse, M.; Kopcho, J. J.; Rosengren, S.; Erion, M. D. J. Med. Chem. 2003, 46, 4750 https://doi.org/10.1021/jm030230z
  16. Perner, R. J.; Gu, Y. G.; Lee, C. H.; Bayburt, E. K.; McKie, J.; Alexander, K. M.; Kohlhaas, K. L.; Wismer, C. T.; Mikusa, J.; Jarvis, M. F.; Kowaluk, E. A.; Bhagwat, S. S. J. Med. Chem. 2003, 46, 5249 https://doi.org/10.1021/jm030327l
  17. Ugarkar, B. G.; Castellino, A. J.; DaRe, J. M.; Kopcho, J. J.; Wiesner, J. B.; Schanzer, J. M.; Erion, M. D. J. Med. Chem. 2000, 43, 2894 https://doi.org/10.1021/jm0000259
  18. Zheng, G. Z.; Lee, C. H.; Pratt, J. K.; Perner, R. J.; Jiang, M. Q.; Gomtsyan, A.; Matulenko, M. A.; Mao, Y.; Koenig, J. R.; Kim, K. H.; Muchmore, S.; Yu, H.; Kohlhaas, K.; Alexander, K. M.; McGaraughty, S.; Chu, K. L.; Wismer, C. T.; Mikusa, J.; Jarvis, M. F.; Marsh, K.; Kowaluk, E. A.; Bhagwat, S. S.; Stewart, A. O. Biorg. Med. Chem. Lett. 2001, 11, 2071 https://doi.org/10.1016/S0960-894X(01)00375-4
  19. Zheng, G. Z.; Mao, Y.; Lee, C. H.; Pratt, J. K.; Koenig, J. R.; Perner, R. J.; Cowart, M. D.; Gfesser, G. A.; McGaraughty, S.; Chu, K. L.; Zhu, C.; Yu, H.; Kohlhaas, K.; Alexander, K. M.; Wismer, C. T.; Mikusa, J.; Jarvis, M. F.; Kowaluk, E. A.; Stewart, A. O. Biorg. Med. Chem. Lett. 2003, 13, 3041 https://doi.org/10.1016/S0960-894X(03)00642-5
  20. Perner, R. J.; Lee, C. H.; Jiang, M.; Gu, Y. G.; Didomenico, S.; Bayburt, E. K.; Alexander, K. M.; Kohlhaas, K. L.; Jarvis, M. F.; Kowaluk, E. L.; Bhagwat, S. S. Biorg. Med. Chem. Lett. 2005, 15, 2803 https://doi.org/10.1016/j.bmcl.2005.03.098
  21. Gomtsyan, A.; Didomenico, S.; Lee, C. H.; Stewart, A. O.; Bhagwat, S. S.; Kowaluk, E. A.; Jarvis, M. F. Biorg. Med. Chem. Lett. 2004, 14, 4165 https://doi.org/10.1016/j.bmcl.2004.06.029
  22. Matulenko, M. A.; Lee, C. H.; Jiang, M.; Frey, R. R.; Cowart, M. D.; Bayburt, E. K.; Didomenico, S.; Gfesser, G. A.; Gomtsyan, A.; Zheng, G. Z.; McKie, J. A.; Stewart, A. O.; Yu, H.; Kohlhaas, K. L.; Alexander, K. M.; McGaraughty, S.; Wismer, C. T.; Mikusa, J.; Marsh, K. C.; Snyder, R. D.; Diehl, M. S.; Kowaluk, E. A.; Jarvis, M. F.; Bhagwat, S. S. Biorg. Med. Chem. 2005, 13, 3705 https://doi.org/10.1016/j.bmc.2005.03.023
  23. Gomtsyan, A.; Didomenico, S.; Lee, C. H.; Matulenko, M. A.; Kim, K.; Kowaluk, E. A.; Wismer, C. T.; Mikusa, J.; Yu, H.; Kohlhaas, K.; Jarvis, M. F.; Bhagwat, S. S. J. Med. Chem. 2002, 45, 3639 https://doi.org/10.1021/jm020049a
  24. Lee, C. H.; Jiang, M.; Cowart, M.; Gfesser, G.; Perner, R.; Kim, K. H.; Gu, Y. G.; Williams, M.; Jarvis, M. F.; Kowaluk, E. A.; Stewart, A. O.; Bhagwat, S. S. J. Med. Chem. 2001, 44, 2133 https://doi.org/10.1021/jm000314x
  25. Lee, C. H.; Daanen, J. F.; Jiang, M.; Yu, H.; Kohlhaas, K. L.; Alexander, K.; Jarvis, M. F.; Kowaluk, E. L.; Bhagwat, S. S. Biorg. Med. Chem. Lett. 2001, 11, 2419 https://doi.org/10.1016/S0960-894X(01)00454-1
  26. Bharatham, N.; Bharatham, K.; Lee, K. W. J. Mol. Graph. Model. 2006, 25, 813
  27. Du, L. P.; Li, M. Y.; Tsai, K. C.; You, Q. D.; Xia, L. Biochem. Biophys. Res. Commun. 2005, 332, 677 https://doi.org/10.1016/j.bbrc.2005.04.165
  28. Bharatham, N.; Bharatham, K.; Lee, K. W. Bull. Korean Chem. Soc. 2007, 28, 200 https://doi.org/10.5012/bkcs.2007.28.2.200
  29. Lipinski, C. A.; Lombardo, F.; Domiay, B. W.; Freeney, P. J. Adv. Drug Deliv. Rev. 1997, 23, 3 https://doi.org/10.1016/S0169-409X(96)00423-1
  30. Tetko, I. V. Mini-Rev. Med. Chem. 2003, 3, 809 https://doi.org/10.2174/1389557033487638
  31. Sprague, P. In Perspectives in Drug Discovery and Design; Anderson, P. S., Kenyon, G. L., Marshall, G. R., Muller, K., Eds.; ESCOM: Leiden, 1995; Vol. 3, pp 1-20

Cited by

  1. Ligand Based Pharmacophore Identification and Molecular Docking Studies for Grb2 Inhibitors vol.33, pp.5, 2012, https://doi.org/10.5012/bkcs.2012.33.5.1707
  2. Identification of Novel Human HDAC8 Inhibitors by Pharmacophore-based Virtual Screening and Density Functional Theory Approaches vol.39, pp.2, 2018, https://doi.org/10.1002/bkcs.11366
  3. QM and Pharmacophore based 3D-QSAR of MK886 Analogues against mPGES-1 vol.29, pp.3, 2008, https://doi.org/10.5012/bkcs.2008.29.3.647
  4. Pharmacophore Mapping and Virtual Screening for SIRT1 Activators vol.30, pp.5, 2007, https://doi.org/10.5012/bkcs.2009.30.5.1152
  5. Pharmacophore Modeling, Virtual Screening and Molecular Docking Studies for Identification of New Inverse Agonists of Human Histamine H1 Receptor vol.31, pp.1, 2007, https://doi.org/10.5012/bkcs.2010.31.01.052
  6. Deciphering ligand dependent degree of binding site closure and its implication in inhibitor design: A modeling study on human adenosine kinase vol.28, pp.6, 2010, https://doi.org/10.1016/j.jmgm.2009.12.001
  7. Pharmacophore Design for Anti-inflammatory Agent Targeting Interleukin-2 Inducible Tyrosine Kinase (Itk) vol.31, pp.11, 2007, https://doi.org/10.5012/bkcs.2010.31.11.3333
  8. Pharmacophore Identification for Peroxisome Proliferator-Activated Receptor Gamma Agonists vol.32, pp.1, 2007, https://doi.org/10.5012/bkcs.2011.32.1.201