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Adenosine kinase (AK) is a ubiquitous intracellular enzyme, which catalyzes the phosphorylation of adenosine 
(ADO) to adenosine monophosphate (AMP). AK inhibitors have therapeutic potential as analgesic and anti­
inflammatory agents. A chemical feature based pharmacophore model has been generated from known AK 
inhibitors (26 training set compounds) by HypoGen module implemented in CATALYST software. The top 
ranked hypothesis (Hypo1) contained four features of two hydrogen-bond acceptors (HBA) and two 
hydrophobic aromatics (Z). Hypo1 was validated by 124 test set molecules with a correlation coefficient of 
0.905 between experimental and estimated activity. It was also validated by CatScramble method. Thus, the 
Hypo1 was exploited for searching new lead compounds over 238,819 chemical compounds in NCI database 
and then the selected compounds were screened based on restriction estimated activity and Lipinski’s rules to 
evaluate their drug-like properties. Finally we could obtain 72 new lead candidates and the two best compound 
structures from them were posted.
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Introduction

Adenosine (ADO) is an extracellular signaling agent within 
the central and peripheral nervous system.1,2 It is a purine 
nucleoside released from the cells or formed extracellularly, 
and it diffuses to the cell membrane of surrounding cells and 
binds to adenosine receptors.2,3,4 During cellular stress, local 
intra- and extracellular concentrations of adenosine marked­
ly increase, which is followed by the active transport of 
ADO out of the cell and subsequent activation of adenosine 
receptor subtypes.2,5 Activation of ADO receptors produces 
a variety of homeostatic inhibitory cellular events that 
contribute to anti-nociceptive and anti-inflammatory actions 
in vivo 6 Strong evidence suggests that this protective path­
way is involved in pathological processes including neuro­
degeneration, seizures, ischemia, inflammation and pain.7

Adenosine kinase (AK) is a ubiquitous intracellular 
enzyme, which catalyzes the phosphorylation of adenosine 
to adenosine monophosphate, and therefore is a key enzyme 
in the control of cellular concentrations of ADO.8 It rapidly 
phosphorylates ADO, maintaining intracellular ADO concen­
trations at low levels. Since ADO uptake is driven by its 
concentration gradient, AK inhibition reduces the cellular 
uptake of ADO,9 thus potentiating the local concentration of 
ADO in the extracellular compartment as well as increasing 
the local concentration of ADO in the intracellular site. AK 
inhibitors, therefore, have therapeutic potential as analgesic 
and anti-inflammatory agents.

Until recently all of the reported AK inhibitors contained 
adenosine-like structural motif which resemble the natural 
substrate ADO. Nucleoside analogues in general are highly 
polar and rapidly metabolized. Our interest has been to 
discover non-nucleoside AK inhibitors free of mentioned 

side affects. The goal of this study is to construct a pharma­
cophore model based on common chemical features of exist­
ing AK inhibitors by using the HypoGen module implement­
ed in CATALYST software.10 The pharmacophore modeling 
is a very effective method that allows scientists to gain valu­
able information of how ligands bind to the protein active 
site.11 It is expected to provide useful knowledge for 
developing new potentially active candidates targeting the 
AK. Hence, the best pharmacophore model was selected 
along with established protocols carefully and then it was 
validated by two methods. New compounds with similar 
features were retrieved from chemical database and they were 
screened based on their estimated activity and calculated 
drug-like properties.

Methods

Training Set Selection and Conformation지 Search. 
The most important process in pharmacophore model gener­
ation is the selection of training set compounds. Over the last 
few years, a number of AK inhibitors have been identi­
fied, and thus we have collected a set of 381 molecules 
whose AK inhibitory activity data were taken from the 
literature and generated a database by using MDL ISIS/Base.12 
Among these molecules, whose activities span a range of 5 
orders of magnitude, training set selection was based on the 
fact that each order of magnitude is represented by at least 
three compounds, including the most active and inactive 
ones. It is extremely important to include the most active 
compounds as they contribute more to form the chemical 
feature based model. Conformations for all training set 
molecules were generated by an energy constraint of 20 
kcal/mol, using Best Conformational Analysis method and
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no. Structure no. Structure no. Structure no. Structure

Table 1. Molecular structures of the 26 training set compounds

Poling Algorithm1 in CATALYST. A maximum of 250 con­
formations of each molecule were generated to ensure maxi­
mum coverage of the conformational space. The training set 
comprising of 26 compounds representing structural diversity 
and wide coverage of activity range (IC50 ranging from 0.17 
nM to 10000 nM) was used to generate pharmacophore 
hypotheses (Table 1).14-25 It comprises five scaffolds including 
nucleoside and non-nucleoside type AK inhibitors.

Generation of Pharmacophore Hypotheses with Hypo­
Gen. All training set compounds were structurally diverse 
and possessed certain common comparable inhibitory poten­
cies, and chemical features. On the basis of the structural 

information from these known AK inhibitors, a set of features 
crucial for activity were considered to represent a pharmaco­
phore hypotheses. The HypoGen module in CATALYST was 
used to generate pharmacophore hypotheses wherein it 
evaluates a collection of conformational models of mole­
cules, and maps them to the selected chemical features 
(pharmacophore). The top ranked pharmacophore is expect­
ed to identify the common binding features and the hypo­
thetical orientation of the active compounds interacting with 
the target enzyme, protein, or receptor.

Validation of Pharmacophore Hypothesis. Validation of 
pharmacophore hypothesis was done by two procedures26: 
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test set method and CatScramble method. The test set 
comprising of 124 compounds was collected from in-house 
database and conformers were generated in a similar way as 
that of training set compounds. Compounds which had only 
similar assay were included in the test set and their activities 
were estimated using the best ranked pharmacophore. The 
statistical validation based on Fischer’s randomization test 
was also performed using the CatScramble program.27 The 
goal of this type of validation is to check whether there is a 
strong correlation between the chemical structures and the 
biological activity and to generate pharmacophore hypotheses 
using a random reassignment of activity values among the 
molecules of the training set. In this statistical validation 
test, we selected 95% confidence level, and thus 19 spread­
sheets were generated.

Database Screening. All the compounds with novel 
chemical structure and desired chemical features from NCI 
database consisting of 238,819 compounds were screened by 
the Hypo1 hypothesis. Database search was performed by 
the Best Flexible Search Databases of Spread Sheets method.28

Drug-like Property Calculation. Lipinski’s rule-of-five 
is a simple model to forecast the absorption and intestinal 
permeability of a compound.29 According to the rule, com­
pounds are considered likely to be well-absorbed when they 
possess less than 5 of LogP, less than 500 of molecular 
weight, less than 5 of number of H-bond donors, less than 10 
of number H-bond acceptors, and finally less than 10 of 
number of rotatable bonds. All these properties were 
calculated using Molinspiration online database.30

Results and Discussion

Pharmacophore Hypothesis Generation. During a 
HypoGen run, CATALYST distinguishes between alternatives 
of thousands of models by applying cost analysis and by 
searching for the simplest set of chemical functions that 
correlate best with the observed activity.31 At the end of the 
run, it produces a set of 10 hypotheses using the data from 
the 26 training set compounds. Hypol is the most significant 
pharmacophore hypothesis in this study, characterized by the 

highest cost difference (73.824), lowest root-mean-square 
deviation (RMSD) (0.802), and the best correlation coeffi­
cient (0.957). The fixed cost represents the simple model 
that fits all data perfectly while the null cost presumes that 
there is no relationship in the dataset. The fixed cost and null 
cost are 102.47, 185.614 respectively. The total cost 
describes each of the pharmacophore hypothesis with a 
value of 111.79 for Hypo1 which is much below the null cost 
and closer to the fixed cost.

A meaningful pharmacophore hypothesis may result when 
the difference between null cost and fixed cost is large. A 
value greater than 60 bits for a pharmacophore hypothesis is 
an excellent chance the model represents a true correlation 
and a value of 40-60 bits may suggest that it has 75-90% 
probability of correlating the data. The cost values, correlation 
coefficients (r), RMSD, and pharmacophore features are 
listed in Table 2. From Table 2 we can see that all 10 hypo­
theses have common features of two hydrogen-bond acceptors 
(HBA) and two hydrophobic aromatics (Z) with the excep­
tion of only last hypothesis. The last hypothesis has different 
features with two HBAs, one Z and one ring aromatic (RA). 
The Hypo1 contains four features of two HBAs and two Zs. 
Two-dimensional (2D) distances between all features in 
Hypo1 are shown in Figure 1.

Figure 2 shows that the Hypo1 aligned with the most

Figure 1. Two-dimensional representation of the top ranked 
hypothesis (Hypo1). All distances are in A unit.

Table 2. Information of statistical significance and predictive power presented in cost values for top 10 hypotheses

Hypo No. Features" -
Training set Test set 

correlation (r)Total cost ACost RMSD Correlation(r)

1 AAZZ 111.790 73.824 0.802 0.957 0.905
2 AAZZ 113.998 71.616 0.941 0.939 0.824
3 AAZZ 121.936 63.678 1.203 0.899 0.770
4 AAZZ 122.843 62.771 1.250 0.891 0.674
5 AAZZ 123.468 62.146 1.268 0.887 0.802
6 AAZZ 123.597 62.017 1.271 0.887 0.741
7 AAZZ 124.423 61.191 1.293 0.882 0.788
8 AAZZ 124.594 61.02 1.285 0.884 0.779
9 AAZZ 126.432 59.182 1.273 0.889 0.551

10 AAZR 126.601 59.013 1.331 0.876 0.685
Null cost of top-ten score hypotheses is 185.614 bits. Fixed cost is 102.47 bits. Configuration cost is 13.8914 bits. “Abbreviation used for features: A, 
hydrogen-bond acceptor; Z, hydrophobic aromatic; R, ring aromatic.
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Figure 2. The Hypo1 mapping with training set compound 1 (a) 
and compound 3 (b). Pharmacophore features are color-coded: 
green for hydrogen-bond acceptor feature (HBA) and light blue for 
hydrophobic aromatic feature (Z).

active compound 1 (IC50 = 0.17 nM) and compound 3 (IC50 = 
0.98 nM), among the training set molecules respectively. All 
compounds in this study were classified by their activity as 
highly active (IC50 < 10 nM, +++), moderately active (1000 
> IC50 > 10 nM, ++), and inactive (IC50 > 1000 nM, +). The 
estimated inhibitory activities of the 26 molecules in the 
training set were evaluated using Hypo1 and then compared 
to the experimental data in Table 3. Compounds of all

Table 3. Experimental biological activity and the estimated activity 
for the training set molecules based on the top ranked hypothesis

a+ indicates that the estimated IC50 is higher than the experimental IC50; 
-indicates that the estimated IC50 is lower than the experimental IC50; a 
value of 1 indicates that estimated IC50 is equal to the experimental IC50. 
bFit value indicates how well the features in the pharmacophore overlap 
the chemical features in the molecule. cActivity scale: +++, IC50 < 10 nM 
(highly active); ++, 1000 > IC50 N 10 nM(moderately active); +, IC50 N 
1000 nM (inactive).

Compd
Experimental Estimated

IC50 IC50

(nM) (nM)
Errora Fit 

valueb
Activity 

scalec

Estimated 
activity 
scalec

1 0.17 0.19 +1.1 8.26 +++ +++
2 0.47 2.4 +5 7.17 +++ +++
3 0.98 0.9 -1.1 7.59 +++ +++
4 1 0.93 -1.1 7.58 +++ +++
5 1.3 5.4 +4.1 6.81 +++ +++
6 2.8 4.6 +1.7 6.88 +++ +++
7 3.8 9.3 +2.5 6.58 +++ +++
8 4.1 6.6 +1.6 6.73 +++ +++
9 7.5 18 +2.4 6.30 +++ ++

10 8.1 6.6 -1.2 6.72 +++ +++
11 12 5.2 -2.3 6.83 ++ +++
12 22 16 -1.4 6.35 ++ ++
13 30 160 +5.3 5.34 ++ ++
14 40 18 -2.2 6.28 ++ ++
15 63 110 +1.7 5.52 ++ ++
16 72 14 -5.1 6.40 ++ ++
17 100 21 -4.8 6.23 ++ ++
18 120 210 +1.8 5.22 ++ ++
19 250 78 -3.2 5.65 ++ ++
20 460 240 -1.9 5.17 ++ ++
21 770 340 -2.3 5.02 ++ ++
22 1000 1000 +1 4.54 + +
23 2000 1600 -1.3 4.36 + +
24 4000 3800 -1.1 3.97 + +
25 6100 2600 -2.3 4.13 + +
26 10000 18000 -1.8 3.28 + +
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Figure 3. Correlation between experimental and estimated activity 
data over 124 test set compounds.

activity scale were predicted appropriately except for only 
two compounds. The compound 9 (highly active) was pre­
dicted to be moderately active and the compound 1 1 
(moderately active) was predicted to be highly active.

Validation of the Pharmacophore Model. The Hypo1 
gave a correlation coefficient 0.905 between experimental 
and estimated activity for 124 test set molecules (Figure 3) 
and it was the best correlation among all 10 hypotheses 
(Table 2). As represented in Figure 4a and 4b, the mapping 
of Hypo1 onto highly active compounds in the test set were 
fit appropriately and had a estimated activity of 5 nM 
(experimental IC50 = 5 nM) and 9.1 nM (experimental IC50 = 
10 nM), respectively. The model was further validated by 
using CatScramble which generates random spreadsheets to 
create hypotheses using exactly the same features as used in 
generating the original pharmacophore hypothesis. The results 
from the 19 spreadsheets are listed in Table 4. The reasoning 
behind this procedure is that if the randomized data sets 
produced a hypothesis with a high correlation value than the 
original hypothesis, then the methodology of the pharmaco­
phore generation is defective.

The results of CatScramble clearly indicate that all values 
generated after randomization produced hypotheses with no 
predictive value similar to that of original hypothesis. Out of 
19 runs, only three trials had a correlation value around 0.7, 
but the RMSD values were very high and the total cost 
values were almost equal to the null cost value, which is not

Figure 4. The Hypo1 mapping with two highly active compounds 
from the test set.
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Table 4. Results from statistical validation using CatScramble implemented in CATALYST software

Validation No. Total cost ACost Fixed cost RMSD Correlation (r) Configuration cost
Results for unscrambled
Hypo1 111.790 73.824 102.470 0.802 0.957 13.891

Results for scrambled
Trial 1 156.787 56.820 99.967 2.073 0.658 11.388
Trial 2 171.106 71.240 99.866 2.335 0.528 11.288
Trial 3 159.052 56.206 102.846 2.078 0.655 14.267
Trial 4 151.878 46.109 105.769 1.868 0.734 17.191
Trial 5 163.257 60.886 102.371 2.163 0.617 13.792
Trial 6 170.052 68.621 101.431 2.289 0.554 12.852
Trial 7 182.615 88.544 94.071 2.584 0.400 5.492
Trial 8 149.323 50.973 98.350 1.946 0.709 9.771
Trial 9 180.660 78.335 102.325 2.454 0.450 13.747
Trial 10 174.147 71.153 102.994 2.314 0.545 14.415
Trial 11 151.442 47.106 104.336 1.899 0.723 15.757
Trial 12 166.759 68.206 98.553 2.287 0.554 9.974
Trial 13 161.561 60.668 100.893 2.134 0.633 12.314
Trial 14 166.107 63.009 103.098 2.195 0.602 14.519
Trial 15 180.235 83.708 96.527 2.532 0.390 7.948
Trial 16 162.488 61.093 101.395 2.166 0.616 12.817
Trial 17 161.746 61.797 99.949 2.170 0.614 11.370
Trial 18 176.539 78.064 98.475 2.450 0.453 9.896
Trial 19 159.889 63.516 96.373 2.208 0.596 7.794
Null cost of top-ten score hypotheses is 185.614 bits. Fixed cost is 102.47 bits. Configuration cost is 13.8914bits.

238.819 二^ 
l^NCI DatabaseJ

Four featured pharmacophore

Less than 0.2 nM predicted activity

Lipinski's rule-of-five

Figure 6. The Hypo1 mapping with new lead compound 
NCI0210803 (a) and NCI0109967 (b).

Figure 5. Flowchart of the screening procedure for new AK 
inhibitor design.

desirable for a good hypothesis. Therefore, the statistical 
validation results strongly support that the Hypo1 is not 
generated by chance since its values are far more superior to 
those of the 19 random hypotheses generated. These valida­
tions provide confidence on our pharmacophore model and 
thus it had been used for the next step, new lead search.

Database Search. The validated four feature pharmaco­
phore, Hypo1 was used to screen molecules with similar 
features from the NCI2000 database which contains 238,819 
compounds. The 14,844 lead compounds were obtained 
from the first 3D query. Their activities were estimated and 
were screened based on various criteria as shown in flow­
chart (Figure 5). Upon restricting the minimum estimated 
activity to 0.2 nM which is the activity threshold for the 
most active compounds, 1246 structures were left from the 

14,844 compounds. Properties of the each compound like H- 
bond donors, H-bond acceptors, number of rotatable bonds, 
LogP values can be calculated based upon the structure. 
Though there are no specific rules for an ideal drug 
candidate, Lipinski's rule of five (LogP < 5, number of H- 
bond acceptors < 10, number of H-bond donors < 5) give us 
a basic idea about the fundamental properties to be a drug. 
Thus, molecular weight and number of rotatable bonds were 
calculated in CATALYST spreadsheet and compounds which 
had molecular weight less than 500 and numbers of rotatable 
bonds less than 10 were only considered. Only 152 leads 
were obtained which were further screened for compounds 
having H-bond acceptors less than 10 and H-bond donors 
less than 5 using Molinspiration software. Ultimately 72 
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lead compounds satisfied the Lipinski’s rules indicating that 
they have ideal physiological properties. From the final 72 
compounds, here we present only the two best candidate 
structures for new lead compounds, NCI0210803 and 
NCI0109967 (Figure 6). They showed an estimated activity 
of 0.01 nM and 0.012 nM, respectively and fitted well with 
the Hypo1. Thus, our pharmacophore model was able to 
retrieve few leads which had estimated inhibitory activity 
similar to most active compounds with acceptable calculated 
drug-like properties and therefore they could be recommend­
ed for further studies.

Conclusion

Our goal was to generate a predictive pharmacophore 
model that can be utilized to search 3D databases and screen 
them based on drug-like compounds to identify new non­
nucleoside AK inhibitors. The 26 training set compounds 
were selected rationally and were used to generate pharma­
cophore hypothesis. The Hypo1, generated for AK inhibitors 
is characterized by four features: two HBAs and two Zs 
which complement the active site nature with a high corre­
lation coefficient of 0.957. Our hypothesis was validated by 
the following two methods: first with a test set of 124 
compounds; second by CatScramble method. The validated 
pharmacophore model was used for searching new lead 
compounds. Through the 3D query, 14,844 compounds were 
obtained from the 238,819 compounds of NCI database, and 
the number was reduced to 1246 when physico-chemical 
properties were considered. The new lead candidate com­
pounds were screened based on Lipinski’s rule to have drug­
like properties and so finally we could obtain 72 compounds 
and two of them were posted in this article. Thus, our 
pharmacophore model was able to retrieve few leads which 
had estimated inhibitory activity similar to most active com­
pounds with acceptable calculated drug-like properties and 
therefore they could be recommended for further studies.
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