DOI QR코드

DOI QR Code

Simulation of 27Al MQMAS NMR Spectra of Mordenites Using Point Charge Model with First Layer Only and Multiple Layers of Atoms

  • Chae, Seen-Ae (Analysis Research Division, Daegu Center, Korea Basic Science Institute) ;
  • Han, Oc-Hee (Analysis Research Division, Daegu Center, Korea Basic Science Institute) ;
  • Lee, Sang-Yeon (Department of Applied Chemistry, Kyungpook National University)
  • Published : 2007.11.20

Abstract

The 27Al multiple quantum magic angle spinning (MQMAS) nuclear magnetic resonance (NMR) spectra of mordenite zeolites were simulated using the point charge model (PCM). The spectra simulated by the PCM considering nearest neighbor atoms only (PCM-n) or including atoms up to the 3rd layer (PCM-m) were not different from those generated by the Hartree-Fock (HF) molecular orbital calculation method. In contrast to the HF and density functional theory methods, the PCM method is simple and convenient to use and does not require sophisticated and expensive computer programs along with specialists to run them. Thus, our results indicate that the spectral simulation of the 27Al MQMAS NMR spectra obtained with the PCM-n is useful, despite its simplicity, especially for porous samples like zeolites with large unit cells and a high volume density of pores. However, it should be pointed out that this conclusion might apply only for the atomic sites with small quadrupole coupling constants.

Keywords

References

  1. Burbidge, B. W.; Keen, I. M.; Eyles, M. K. In Advances in Chemistry Series, Molecular Sieve Zeolites, Physical and Catalytic Properties of Zeolite Modernite; Flanigen, E. M., Sand, L. B., Eds.; American Chemical Society: Washington, 1971; Vol 101-102, p 400
  2. Engelhardt, G.; Michel, D. High Resolution Solid State NMR of Silicates and Zeoltes; John Wiley & Sons: New York, 1987
  3. Klinowski, J. Chem. Rev. 1991, 91, 1459 https://doi.org/10.1021/cr00007a010
  4. Fyfe, C. A.; Feng, Y.; Grondey, H.; Kokotailo, G. T.; Gies, H. Chem. Rev. 1991, 91, 1525 https://doi.org/10.1021/cr00007a013
  5. Barras, J.; Klinowski, J. J. Chem. Soc. Faraday Trans. 1994, 90, 3719 https://doi.org/10.1039/ft9949003719
  6. Fernandez, C.; Amoureux, J. P. Chem. Phys. Lett. 1995, 242, 449 https://doi.org/10.1016/0009-2614(95)00768-Y
  7. Baltisberger, J. H.; Xu, Z.; Stebbins, J. F.; Wang, S. H.; Pines, A. J. Am. Chem. Soc. 1996, 118, 7209 https://doi.org/10.1021/ja9606586
  8. Ashbrook, S. E.; McManus, J.; MacKenzie, K. J. D.; Wimperis, S. J. Phys. Chem. B 2000, 104, 6408 https://doi.org/10.1021/jp000316t
  9. Chen, T. H.; Wouter, B. H.; Grobet, P. J. Eur. J. Inorg. Chem. 2000, 281
  10. Chen, J.; Chen, T.; Guan, N.; Wang, J. Catal. Today 2004, 93-95, 627
  11. Han, O. H.; Kim, C. S.; Hong, S. B. Angew. Chem. Int. Ed. 2002, 41, 469 https://doi.org/10.1002/1521-3773(20020201)41:3<469::AID-ANIE469>3.0.CO;2-K
  12. Frydman, L.; Harwood, J. S. J. Am. Chem. Soc. 1995, 117, 5367 https://doi.org/10.1021/ja00124a023
  13. Medek, A.; Harwood, J. S.; Frydman, L. J. Am. Chem. Soc. 1995, 117, 12779 https://doi.org/10.1021/ja00156a015
  14. Mains, G. J.; Nantsis, E. A.; Carper, W. R. J. Phys. Chem. A 2001, 105, 4371 https://doi.org/10.1021/jp004549w
  15. Gauss, J.; Schneider, U.; Ahlrichs, R.; Dohmeier, C.; Schnockel, H. J. Am. Chem. Soc. 1993, 115, 2402 https://doi.org/10.1021/ja00059a040
  16. Koller, H.; Meijer, E. L.; van Santen, R. A. Solid State NMR 1997, 9, 165 https://doi.org/10.1016/S0926-2040(97)00056-8
  17. Chem, L.; Zhan, M.; Yue, Y.; Ye, C.; Deng, F. Micropor. Mesopor. Mater. 2004, 76, 151 https://doi.org/10.1016/j.micromeso.2004.08.007
  18. Valiyev, K. A.; Zripov, M. M. Zh. Strukt. Khim. 1966, 7, 494
  19. Schlenker, J. L.; Pluth, J. J.; Smith, J. V. Mat. Res. Bull. 1979, 14, 849 https://doi.org/10.1016/0025-5408(79)90148-X
  20. Martucci, A.; Gruciani, G.; Alberti, A.; Ritter, C.; Ciambelli, P.; Rapacciuolo, M. Micropor. Mesopor. Mater. 2000, 35-36, 405
  21. Lippmaa, E.; Samoson, A.; Magi, M. J. Am. Chem. Soc. 1986, 108, 1730 https://doi.org/10.1021/ja00268a002
  22. Frisch, M. J. et al. Gaussian 98, Rev. A.7; Gaussian Inc.: Pittsburgh, PA, 1998
  23. Man, P. P. Phys. Rev. B 1998, 58, 2764 https://doi.org/10.1103/PhysRevB.58.2764
  24. Park, I. W.; Choi, H.; Kim, H. J.; Shin, H. W.; Park, S. S.; Choh, S. H. Phys. Rev. B 2002, 65, 195210 https://doi.org/10.1103/PhysRevB.65.195210
  25. Han, O. H.; Oldfield, E. Inorg. Chem. 1990, 29, 3667
  26. Mortier, W. J.; Pluth, J. J.; Smith, J. V. Mat. Res. Bull. 1975, 10, 1037 https://doi.org/10.1016/0025-5408(75)90212-3
  27. Schelenker, J. L.; Pluth, J. J.; Smith, J. V. Mat. Res. Bull. 1978, 13, 77 https://doi.org/10.1016/0025-5408(78)90030-2
  28. Schelenker, J. L.; Pluth, J. J.; Smith, J. V. Mat. Res. Bull. 1978, 13, 169 https://doi.org/10.1016/0025-5408(78)90219-2
  29. Schelenker, J. L.; Pluth, J. J.; Smith, J. V. Mat. Res. Bull. 1978, 13, 901 https://doi.org/10.1016/0025-5408(78)90101-0
  30. Schelenker, J. L.; Pluth, J. J.; Smith, J. V. Mat. Res. Bull. 1979, 14, 751 https://doi.org/10.1016/0025-5408(79)90134-X
  31. Ito, M.; Saito, Y. Bull. Chem. Soc. Jpn. 1985, 58, 3035 https://doi.org/10.1246/bcsj.58.3035

Cited by

  1. 23 Na and 27 Al NMR Study of Structure and Dynamics in Mordenite vol.48, pp.2, 2007, https://doi.org/10.1007/s00723-016-0847-8