DOI QR코드

DOI QR Code

Trimerization of Isobutene over Solid Acid Catalysts under Wide Reaction Conditions

  • Yoon, Ji-Woong (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology) ;
  • Jhung, Sung-Hwa (Department of Chemistry, Kyungpook National University) ;
  • Kim, Tae-Jin (R&D Center, SK Energy) ;
  • Lee, Hee-Du (R&D Center, SK Energy) ;
  • Jang, Nak-Han (Department of Science Education, Kongju National University of Education) ;
  • Chang, Jong-San (Research Center for Nanocatalysts, Korea Research Institute of Chemical Technology)
  • Published : 2007.11.20

Abstract

Oligomerization of isobutene has been investigated using a few solid acid catalysts in order to produce efficiently triisobutenes that are useful chemical feedstocks for heavy alkylates and neo-acids. Several reaction conditions such as space velocity and isobutene concentration are evaluated, and a few cation exchange resins with various acid capacities were compared in the reaction. High trimers selectivity and high conversion can be obtained over a catalyst containing high acid capacity at low space velocity and relatively low isobutene concentration. The stability of a catalyst for the reaction is high when the acid capacity of the catalyst is high (for example Amberlyst-35).

Keywords

References

  1. Mantilla, A.; Ferrat, G.; Lopez-Ortega, A.; Romero, E.; Tzompantzi, F.; Torres, M.; Ortiz-Islas, E.; Gomez, R. J. Mol. Catal. A 2005, 228, 333 https://doi.org/10.1016/j.molcata.2004.09.080
  2. Alcantara, R.; Alcantara, E.; Canoira, L.; Franco, M. J.; Herrera, M.; Navarro, A. Reactive Funct. Polymer 2000, 45, 19 https://doi.org/10.1016/S1381-5148(00)00004-3
  3. www.axens.net
  4. Burnes, E.; Wichelns, D.; Hagen, J. W. Energy Policy 2005, 33, 1155 https://doi.org/10.1016/j.enpol.2003.11.013
  5. Jeon, J.-K.; Park, S.-K.; Park, Y.-K. Catal. Today 2004, 93-95, 467
  6. Honkela, M. L.; Krause, A. O. Ind. Eng. Chem. Res. 2004, 43, 3251 https://doi.org/10.1021/ie030842h
  7. Marchionna, M.; Girolamo, M. D.; Patrini, R. Catal. Today 2001, 65, 397 https://doi.org/10.1016/S0920-5861(00)00587-3
  8. Girolamo, M. D.; Marchionna, M. J. Mol. Catal. A 2001, 177, 33 https://doi.org/10.1016/S1381-1169(01)00307-7
  9. Chiche, B.; Sauvage, E.; Renzo, F. D.; Ivanova, I. I.; Fajula, F. J. Mol. Catal. A 1998, 134, 145 https://doi.org/10.1016/S1381-1169(98)00031-4
  10. Girolamo, M. D.; Lami, M.; Marchionna, M.; Percarollo, E.; Tagliabue, L.; Ancillotti, F. Ind. Eng. Chem. Res. 1997, 36, 4452 https://doi.org/10.1021/ie9700932
  11. Mantilla, A.; Tzompantzi, F.; Ferrat, G.; Lopez-Ortega, A.; Romero, E.; Ortiz-Islas, E.; Gomez, R.; Torres, M. Chem. Commun. 2004, 1498
  12. Mantilla, A.; Tzompantzi, F.; Ferrat, G.; Lopez-Ortega, A.; Alfaro, S.; Gomez, R.; Torres, M. Catal. Today 2005, 107-108, 707
  13. Yoon, J. W.; Chang, J.-S.; Lee, H.-D.; Kim, T.-J.; Jhung, S. H. J. Mol. Catal. A 2006, 260, 181 https://doi.org/10.1016/j.molcata.2006.07.026
  14. Japanese Patent JP 2005015383 (assigned to Idemitsu Kosan)
  15. Japanese Patent JP 2005015384 (assigned to Idemitsu Kosan)
  16. Martens, J. A.; Verrelst, W. H.; Mathys, G. M.; Brown, S. H.; Jacobs, P. A. Angew. Chem. Int. Ed. 2005, 44, 5687 https://doi.org/10.1002/anie.200463045
  17. Yoon, J. W.; Lee, J. H.; Chang, J.-S.; Choo, D. H.; Lee, S. J.; Jhung, S. H. J. Catal. 2007, 245, 253 https://doi.org/10.1016/j.jcat.2006.10.008
  18. Yoon, J. W.; Lee, J. H.; Chang, J.-S.; Choo, D. H.; Lee, S. J.; Jhung, S. H. Catal. Commun. 2007, 8, 967 https://doi.org/10.1016/j.catcom.2006.10.006
  19. Acid capacity of each CER is obtained from www.rhomandhaas.com/ionexchange/IP/sac.htm
  20. Yoon, J. W.; Jhung, S. H.; Lee, J. S.; Kim, T.-J.; Lee, H.-D.; Chang, J.-S. Bull. Kor. Chem. Soc. 2007, accepted https://doi.org/10.5012/bkcs.2007.28.11.2075

Cited by

  1. Solvent-Free Conversion of Linalool to Methylcyclopentadiene Dimers: A Route To Renewable High-Density Fuels vol.4, pp.4, 2011, https://doi.org/10.1002/cssc.201100017
  2. : Case of Isobutene/2-Butene Cross-Metathesis vol.3, pp.9, 2013, https://doi.org/10.1021/cs400508v
  3. Investigation of Production of Motor Fuel Components on Heterogeneous Catalyst with Oligomerization vol.56, pp.9-10, 2013, https://doi.org/10.1007/s11244-013-0041-2
  4. Ruthenium Olefin Metathesis Catalysts with Frozen NHC Ligand Conformations vol.33, pp.11, 2014, https://doi.org/10.1021/om5001452
  5. Oligomerization of Light FCC Naphtha with Ion Exchange Resin Catalyst vol.58, pp.14-17, 2015, https://doi.org/10.1007/s11244-015-0462-1
  6. -Butyl Ether Phaseout: The Role of Heterogeneous Catalysis vol.55, pp.43, 2016, https://doi.org/10.1021/acs.iecr.6b02533
  7. -alkyl groups vol.47, pp.18, 2018, https://doi.org/10.1039/C8DT00619A
  8. Trimerization of Isobutene Over Solid Acid Catalysts vol.13, pp.4, 2009, https://doi.org/10.1007/s10563-009-9080-x
  9. Trimerization of Isobutene over Solid Acid Catalysts under Wide Reaction Conditions vol.28, pp.11, 2007, https://doi.org/10.5012/bkcs.2007.28.11.2075
  10. Effect of Butadiene in Catalytic Trimerization of Isobutene Using Commercial C4 Feeds vol.29, pp.1, 2008, https://doi.org/10.5012/bkcs.2008.29.1.057
  11. Trimerization of Isobutene over Solid Acid Catalysts: Comparison between Cation-exchange Resin and Zeolite Catalysts vol.29, pp.2, 2007, https://doi.org/10.5012/bkcs.2008.29.2.339
  12. Liquid-phase Dehydration of 1-Phenylethanol to Styrene over an Acidic Resin Catalyst vol.32, pp.4, 2007, https://doi.org/10.5012/bkcs.2011.32.4.1327