DOI QR코드

DOI QR Code

Polymer-supported Zinc Tetrahalide Catalysts for the Coupling Reactions of CO2 and Epoxides

  • Lee, Bo-Ra (Department of Chemistry, Kyung Hee University) ;
  • Ko, Nan-Hee (Department of Chemistry, Kyung Hee University) ;
  • Ahn, Byoung-Sung (Environment and Process Division, Korea Institute of Science and Technology) ;
  • Cheong, Min-Serk (Department of Chemistry, Kyung Hee University) ;
  • Kim, Hoon-Sik (Department of Chemistry, Kyung Hee University) ;
  • Lee, Je-Seung (Department of Chemistry, Kyung Hee University)
  • Published : 2007.11.20

Abstract

Homogeneous zinc tetrahalide complexes, highly active catalysts for the coupling reactions of alkylene oxide and CO2 produce alkylene carbonates, were heterogenized due to their tendency to decompose produced alkylene carbonates during the distillation process. Heterogenization of homogeneous zinc tetrahalide complexes was achieved by polymerizing 1-alkyl-3-vinylimidazolium zinc tetrahalides. These polymerized zinc tetrahalide catalysts displayed similar activities to their corresponding monomeric analogues for the coupling reactions of carbon dioxide with ethylene oxide (EO) or propylene oxide (PO) to produce ethylene carbonate (EC) or propylene carbonate (PC). TGA studies showed that the polymer-supported zinc tetrahalide catalysts are thermally stable up to 320 oC. The catalyst recycle test showed that the supported catalysts could be reused over six times. After removal of the polymer-supported catalyst through a simple filtration, EC was able to be isolated without decomposition.

Keywords

References

  1. Shaikh, A.G. Chem. Rev. 1996, 96, 951 https://doi.org/10.1021/cr950067i
  2. Lee, D.; Hur, J.; Kim, B.; Park, S.; Park, D. J. Ind. Eng. Chem. 2003, 9, 513 https://doi.org/10.1021/ie50089a023
  3. Lagowski, J. J. In The Chemistry of Nonaqueous Solvents; Academic Press: New York, 1976
  4. Inaba, M.; Siroma, Z.; Funabiki, A.; Ogumi, Z. Langmuir 1996, 12, 1535 https://doi.org/10.1021/la950848e
  5. Nomura, R.; Niangawa, A.; Matsuda, H. J. Org. Chem. 1980, 45, 3735 https://doi.org/10.1021/jo01307a002
  6. Ratzenhofer, M.; Kisch, H. Angew. Chem. Int. Ed. 1980, 19, 317 https://doi.org/10.1002/anie.198003171
  7. Kisch, H.; Millini, R.; Wang, I. J. Chem. Ber. 1986, 119, 1090 https://doi.org/10.1002/cber.19861190329
  8. Dumler, W.; Kisch, H. Chem. Ber. 1990, 123, 277 https://doi.org/10.1002/cber.19901230209
  9. Man, M. L.; Lam, K. C.; Sit, W. N.; Ng, S. M.; Zhou, Z.; Lin, Z.; Lau, C. P. Chem. Eur. J. 2006, 12, 1004 https://doi.org/10.1002/chem.200500780
  10. Bok, T.; Noh, E. K.; Lee, B. Y. Bull. Korean Chem. Soc. 2006, 27, 1171 https://doi.org/10.5012/bkcs.2006.27.8.1171
  11. Jing, H.; Nguyen, S. T. J. Mol. Catal. A: Chem. 2007, 261, 12 https://doi.org/10.1016/j.molcata.2006.07.057
  12. Jin, L.; Jing, H.; Chang, T.; Bu, X.; Wang, L.; Liu, Z. J. Mol. Catal. A; Chem. 2007, 261, 262 https://doi.org/10.1016/j.molcata.2006.06.011
  13. Cheng, M.; Moor, D. R.; Reczek, J. J.; Chamberlain, B. M.; Lobkovsky, E. B.; Coates, G. W. J. Am. Chem. Soc. 2001, 123, 8738 https://doi.org/10.1021/ja003850n
  14. Paddock, R. L.; Nguyen, S. T. J. Am. Chem. Soc. 2001, 123, 11498 https://doi.org/10.1021/ja0164677
  15. Kim, H. S.; Bae, J. Y.; Lee, J. S.; Kwon, O.-S.; Palgunadi, J.; Lee, S. D.; Lee, S.-H. J. Catal. 2005, 232, 80 https://doi.org/10.1016/j.jcat.2005.01.033
  16. Sun, J.; Wang, L.; Zhang, S.; Li, Z.; Zhang, X.; Dai, W.; Mori, R. J. Mol. Catal. A: Chem. 2006, 256, 295 https://doi.org/10.1016/j.molcata.2006.05.004
  17. Ono, F.; Qiao, K.; Tomida, D.; Yokoyama, C. J. Mol. Catal. A: Chem. 2007, 263, 223 https://doi.org/10.1016/j.molcata.2006.08.037
  18. Kim, H. S.; Kim, J. J.; Kim, H.; Jang, H. G. J. Catal. 2003, 220, 44 https://doi.org/10.1016/S0021-9517(03)00238-0
  19. Palgunadi, J.; Kwon, O.-S.; Lee, H.; Bae, J. Y.; Ahn, B. S.; Min, N.-Y.; Kim, H. S. Catal. Today 2004, 98, 511 https://doi.org/10.1016/j.cattod.2004.09.005
  20. Kim, H. S.; Palgunadi, J.; Lee, J. S.; Lee, S. Y.; Kim, H.; Lee, S. D.; Ahn, B. S. Appl. Catal. A: General 2005, 288, 48 https://doi.org/10.1016/j.apcata.2005.04.036
  21. Wasserscheid, P. J. Ind. Eng. Chem. 2007, 13, 325
  22. Armarego, W. L. F.; Chai, C. L. L. In Purification of Laboratory Chemicals, 5th Ed.; Elsevier: 2003
  23. Jorapur, Y. R.; Chi, D. Y. Bull. Korean Chem. Soc. 2006, 27, 345 https://doi.org/10.5012/bkcs.2006.27.3.345

Cited by

  1. Brønsted Acidic Ionic Liquids Mediated Metallic Salts Catalytic System for the Chemical Fixation of Carbon Dioxide to Form Cyclic Carbonates vol.141, pp.12, 2011, https://doi.org/10.1007/s10562-011-0682-3
  2. The Use of Supported Acidic Ionic Liquids in Organic Synthesis vol.19, pp.7, 2014, https://doi.org/10.3390/molecules19078840
  3. Acidic Ionic Liquids vol.116, pp.10, 2016, https://doi.org/10.1021/acs.chemrev.5b00763
  4. Catalytic Synthesis of Propylene Carbonate from CO2 and Propylene Oxide on Fixed Bed vol.146, pp.10, 2016, https://doi.org/10.1007/s10562-016-1808-4
  5. vol.38, pp.2, 2017, https://doi.org/10.1002/bkcs.11068
  6. Investigation of Prins reaction for the synthesis of 2, 4- disubstituted tetrahydropyran derivatives and 1, 3-dioxanes using polyaniline supported acid as reusable catalyst vol.123, pp.5, 2011, https://doi.org/10.1007/s12039-011-0122-3
  7. The synthesis of organic carbonates from carbon dioxide pp.11, 2009, https://doi.org/10.1039/b819997c
  8. Reusable and efficient polymer-supported task-specific ionic liquid catalyst for cycloaddition of epoxide with CO2 vol.148, pp.3, 2007, https://doi.org/10.1016/j.cattod.2009.07.070