DOI QR코드

DOI QR Code

Microwave Synthesis of Hydrotalcite by Urea Hydrolysis

  • Yang, Zhiqiang (Laboratory of Nano-Green Catalysis and Nano Center for Fine Chemicals Fusion Technology, Department of Chemistry, Inha University) ;
  • Choi, Kwang-Min (Laboratory of Nano-Green Catalysis and Nano Center for Fine Chemicals Fusion Technology, Department of Chemistry, Inha University) ;
  • Jiang, Nanzhe (Laboratory of Nano-Green Catalysis and Nano Center for Fine Chemicals Fusion Technology, Department of Chemistry, Inha University) ;
  • Park, Sang-Eon (Laboratory of Nano-Green Catalysis and Nano Center for Fine Chemicals Fusion Technology, Department of Chemistry, Inha University)
  • Published : 2007.11.20

Abstract

Hydrotalcite, layered double hydroxides (LDH), with hexagonal morphology has been rapidly synthesized by microwave reaction within 1 hour by urea hydrolysis from homogeneous solution. Different synthesis parameters, Mg/Al molar ratio, microwave reaction temperature and microwave power were systematically investigated. Pure hydrotalcite phase was obtained for Mg/Al ratios of 2:1 and 3:1, and higher reaction temperature gave higher crystallinity. The hydrotalcite synthesized at 600W power shows the highest crystallinity and more homogeneous crystal size distribution. The hydrotalcite samples were characterized by powder X-ray diffraction (XRD), simultaneous thermogravimetric/differential thermal analysis (TG/DTA), Fourier Transform Infrared (FT-IR) and Scanning electron micrograph (SEM).

Keywords

References

  1. Mariko, A.-P.; Claude, F.; Jean-Pierre, B. J. Mater. Chem. 2003, 13, 1988 https://doi.org/10.1039/b302747n
  2. Cavani, F.; Trifiro, F.; Vaccari, A. Catal. Today 1991, 11, 173 https://doi.org/10.1016/0920-5861(91)80068-K
  3. Velu, S.; Suzuki, K.; Osaki, T.; Ohashi, F.; Tomura, S. Materials Research Bulletin 1999, 34, 1707 https://doi.org/10.1016/S0025-5408(99)00168-3
  4. Prevot, V.; Forano, C.; Besse, J. P. Chem. Mater. 2005, 17, 6695 https://doi.org/10.1021/cm050581x
  5. Defontaine, G.; Michot, L. J.; Bihannic, I.; Ghanbaja, J.; Briois, V. Langmuir 2004, 20, 9834 https://doi.org/10.1021/la048652e
  6. Defontaine, G.; Michot, L. J.; Bihannic, I.; Ghanbaja, J.; Briois, V. Langmuir 2004, 20, 11213 https://doi.org/10.1021/la048681p
  7. Gardner, E.; Huntoon, K. M.; Pinnavaia, T. J. Adv. Mater. 2001, 13, 1263 https://doi.org/10.1002/1521-4095(200108)13:16<1263::AID-ADMA1263>3.0.CO;2-R
  8. Lopez, T.; Bosch, P.; Ramos, E.; Gomez, R.; Novaro, O.; Acosta, D.; Figueras, F. Langmuir 1996, 12, 189 https://doi.org/10.1021/la940703s
  9. Prinetto, F.; Ghiotti, G.; Graffin, P.; Tichit, D. Microporous Mesoporous Mater. 2000, 39, 229 https://doi.org/10.1016/S1387-1811(00)00197-9
  10. Cai, H.; Hillier, A. C.; Franklin, K. R.; Nunn, C. C.; Ward, M. D. Science 1994, 266, 1551 https://doi.org/10.1126/science.266.5190.1551
  11. Costantino, U.; Marmottini, F.; Nochetti, M.; Vivani, R. Eur. J. Inorg. Chem. 1998, 1439
  12. Mingos, D. M. P.; Baghurst, D. R. Chem. Soc. Rev. 1991, 20, 1 https://doi.org/10.1039/cs9912000001
  13. Park, S.-E.; Chang, J.-S.; Hwang, Y. K.; Kim, D. S.; Jhung, S. H.; Hwang, J. S. Catalysis Surveys from Asia 2004, 8, 91 https://doi.org/10.1023/B:CATS.0000026990.25778.a8
  14. Park, S.-E.; Kim, D. S.; Chang, J.-S.; Kim, W. Y. Catal. Today 1998, 44, 301
  15. Jin, T. H.; Hwang, J.-S.; Kim, Y. H.; Hwang, Y. K.; Jhung, S. H.; Chang, J.-S.; Park, S.-E. Bull. Korean Chem. Soc. 1999, 47, 679
  16. Park, S.-E.; Kim, D. S.; Chang, J.-S.; Kim, W. Y. Stud. Surf. Sci. Catal. 1998, 117, 265
  17. Kormarneni, S.; Roy, R.; Li, Q. H. Mater. Res. Bull. 1992, 27, 1393 https://doi.org/10.1016/0025-5408(92)90004-J
  18. Beck, J. S.; Vartuli, J. C.; Roth, W. J.; Leonowicz, M. E.; Kresge, C. T.; Schmitt, K. D.; Chu, C. T.-W.; Olson, D. H.; Sheppard, E. W.; McCullen, S. B.; Higgins, J. B.; Schlenker, J. L. J. Am. Chem. Soc. 1992, 114, 10834
  19. Jhung, S. H.; Hwang, Y. K.; Chang, J.-S.; Park, S.-E. Micropor. Mesopor. Mater. 2003, 64, 33 https://doi.org/10.1016/S1387-1811(03)00501-8
  20. Fetter, G.; Hernandez, F.; Maubert, A. M.; Lara, V. H.; Bosch, P. J. Porous Mat. 1997, 4, 27 https://doi.org/10.1023/A:1009619005529
  21. Fetter, G.; Bosch, P.; Hernandez, F. A. Mater. Res. Soc. Symp. Proc. 1997, 454, 235
  22. Titulaer, M. K.; Jansen, J. B. H.; Geus, J. W. Clays Clay Miner. 1994, 42, 249 https://doi.org/10.1346/CCMN.1994.0420303
  23. Theo Kloprogge, J.; Frost, R. L. J. Solid State Chem. 1999, 146, 506 https://doi.org/10.1006/jssc.1999.8413
  24. Hernandez-Moreno, M. J.; Ulibarri, M. A.; Rendon, J. L.; Serna, C. J. Phys. Chem. Miner. 1985, 12, 34
  25. Kooli, F.; Kosuge, K.; Tsunashima, A. J. Solid State Chem. 1995, 118, 285 https://doi.org/10.1006/jssc.1995.1346

Cited by

  1. Selective oxidation of biorenewable glycerol with molecular oxygen over Cu-containing layered double hydroxide-based catalysts vol.1, pp.1, 2011, https://doi.org/10.1039/c0cy00018c
  2. Green Cycle: Sulfate Sorption from Natural Water on Anionic Clay Compound Obtained from Industry Wastewater vol.03, pp.02, 2013, https://doi.org/10.4236/gsc.2013.32009
  3. S, from Biomass-Generated Producer Gas Using Biochar-Based and Mixed-Metal Oxide Catalysts vol.28, pp.3, 2014, https://doi.org/10.1021/ef4016872
  4. Solvent-Free Glycerol Transesterification with Propylene Carbonate to Glycerol Carbonate over a Solid Base Catalyst vol.31, pp.4, 2017, https://doi.org/10.1021/acs.energyfuels.7b00034
  5. Biomass-assisted Zeolite Syntheses as a Tool for Designing New Acid Catalysts vol.9, pp.12, 2017, https://doi.org/10.1002/cctc.201700062
  6. ChemInform Abstract: Microwave Synthesis of Hydrotalcite by Urea Hydrolysis. vol.39, pp.9, 2008, https://doi.org/10.1002/chin.200809023
  7. Formation of Layered Bi5Ti3FeO15 Perovskite in Bi2O3-TiO2-Fe2O3 Containing System vol.30, pp.12, 2007, https://doi.org/10.5012/bkcs.2009.30.12.3011
  8. Microwave-assisted synthesis of CuO/ZnO and CuO/ZnO/Al2O3 precursors using urea hydrolysis vol.180, pp.26, 2009, https://doi.org/10.1016/j.ssi.2009.08.014
  9. Phosphate interaction with calcined form of Mg-Al-CO3hydrotalcite in aqueous solutions vol.37, pp.1, 2007, https://doi.org/10.3166/acsm.37.11-20
  10. Determination of Chlorpromazine Hydrochloride with a Layered Double Hydroxide Modified Glassy Carbon Electrode as a Nanocatalyst vol.32, pp.9, 2007, https://doi.org/10.1002/elan.202060011