DOI QR코드

DOI QR Code

Polarity Probing Two-Photon Fluorophores Based on [2.2]Paracyclophane

  • Woo, Han-Young (Department of Nanomaterials Engineering (BK21), Pusan National University) ;
  • Korystov, Dmitry (Institute for Polymers and Organic Solids, University of California) ;
  • Jin, Young-Eup (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University) ;
  • Suh, Hong-Suk (Department of Chemistry and Chemistry Institute for Functional Materials, Pusan National University)
  • Published : 2007.12.20

Abstract

A series of tetra donor substituted [2.2]paracyclophane-based two-photon absorption (TPA) fluorophores were synthesized in neutral and cationic forms. The imaging activity of overall set of fluorophores was studied by the two-photon induced fluorescence (TPIF) method in a range of solvents. We also measured a clear progression toward a longer photoluminescence lifetime with increasing solvent polarity (intrinsic photoluminescence lifetime, τi: ~2 ns in toluene → 12-16 ns in water). The paracyclophane fluorophores with this unique property can be utilized as an optical polarity probe for the biomolecular substrates. The combined measurement of the two-photon fluorescence microscopy (TPM) cell image and TPIF lifetime can give us a better understanding of the biological processes and local environments in the cells.

Keywords

References

  1. Goppert-Mayer, M. Ann. Phys. 1931, 9, 273
  2. Kaiser, W.; Garret, C. G. B. Phys. Rev. Lett. 1961, 7, 229 https://doi.org/10.1103/PhysRevLett.7.229
  3. Rentzepis, P. M.; Pao, Y. H. Appl. Phys. Lett. 1964, 5, 156 https://doi.org/10.1063/1.1754096
  4. Peticolas, W. L. Annu. Rev. Phys. Chem. 1967, 18, 233 https://doi.org/10.1146/annurev.pc.18.100167.001313
  5. Cumpston, B. H.; Anathavel, S. P.; Barlow, S.; Dyer, D. L.; Ehrlich, J. E.; Erskine, L. L.; Heikal, A. A.; Kuebler, S. M.; Lee, I.-Y.; McCord-Maughon, D.; Qin, J.; Rockel, H.; Rumi, M.; Wu, X.-L.; Marder, S. R.; Perry, J. W. Nature 1999, 398, 51
  6. Park, S. H.; Lim, T. W.; Yang, D.-Y.; Kong, H. J.; Kim, R.-H.; Kim, K.- S.; Lee, K.-S. Bull. Korean Chem. Soc. 2004, 25, 1119 https://doi.org/10.5012/bkcs.2004.25.8.1119
  7. Denk, W.; Strickler, J. H.; Webb, W. W. Science 1990, 248, 73 https://doi.org/10.1126/science.2321027
  8. Kohler, R. H.; Cao, J.; Zipfel, W. R.; Webb, W. W.; Hansen, M. R. Science 1997, 276, 2039 https://doi.org/10.1126/science.276.5321.2039
  9. Zipfel, W. R.; Williams, R. M.; Webb, W. W. Nat. Biotechnol. 2003, 21, 1369 https://doi.org/10.1038/nbt899
  10. Albota, M.; Beljonne, D.; Bredas, J.-L.; Ehrlich, J. E.; Fu, J.-Y.; Heikal, A. A.; Hess, S. E.; Kogej, T.; Levin, M. D.; Marder, S. R.; McCord-Maughon, D.; Perry, J. W.; Rockel, H.; Rumi, M.; Subramaniam, G.; Webb, W. W.; Wu, X.-L.; Xu, C. Science 1998, 281, 1653
  11. Rumi, M.; Ehrlich, J. E.; Heikal, A. A.; Perry, J. W.; Barlow, S.; Hu, Z.; McCord-Maughon, D.; Parker, T. C.; Rockel, H.; Thayumanavan, S.; Marder, S. R.; Beljonne, D.; Bredas, J.-L. J. Am. Chem. Soc. 2000, 122, 9500
  12. Cho, B. R.; Son, K. H.; Lee, S. H.; Song, Y.-S.; Lee, Y.-K.; Jeon, S.-J.; Choi, J. H.; Lee, H.; Cho, M. J. Am. Chem. Soc. 2001, 123, 10039
  13. Woo, H. Y.; Hong, J. W.; Liu, B.; Mikhailovsky, A.; Korystov, D.; Bazan, G. C. J. Am. Chem. Soc. 2005, 127, 820 https://doi.org/10.1021/ja0440811
  14. Woo, H. Y.; Korystov, D.; Mikhailovsky, A.; Nguyen, T.-Q.; Bazan, G. C. J. Am. Chem. Soc. 2005, 127, 13794 https://doi.org/10.1021/ja054911q
  15. Woo, H. Y.; Liu, B.; Kohler, B.; Korystov, D.; Mikhailovsky, A.; Bazan, G. C. J. Am. Chem. Soc. 2005, 127, 14721 https://doi.org/10.1021/ja052906g
  16. Kogej, T.; Beljonne, D.; Meyers, F.; Perry, J. W.; Marder, S. R.; Bredas, J.-L. Chem. Phys. Lett. 1998, 298, 1
  17. Luo, Y.; Norman, P.; Macak, P.; Agren, H. J. Phys. Chem. A 2000, 104, 4718 https://doi.org/10.1021/jp993803l
  18. Wang, C.-K.; Zhao, K.; Su, Y.; Ren, Y.; Zhao, X.; Luo, Y. J. Chem. Phys. 2003, 119, 1208 https://doi.org/10.1063/1.1579680
  19. Zalesny, R.; Bartkowiak, W.; Styrcz, S.; Leszczynski, J. J. Phys. Chem. A 2002, 106, 4032 https://doi.org/10.1021/jp0142684
  20. Xu, C.; Webb, W. W. J. Opt. Soc. Am. B 1996, 13, 481 https://doi.org/10.1364/JOSAB.13.000481
  21. Xu, C.; Zipfel, W.; Shear, J. B.; Williams, R. M.; Webb, W. W. Proc. Natl. Acad. Sci. USA 1996, 93, 10763
  22. Bazan, G. C.; Oldham Jr., W. J.; Lachicotte, R. J.; Tretiak, S.; Chernyak, V.; Mukamel, S. J. Am. Chem. Soc. 1998, 120, 9188 https://doi.org/10.1021/ja973816h
  23. Zyss, J.; Ledoux, I.; Volkov, S.; Chernyak, V.; Mukamel, S.; Bartholomew, G. P.; Bazan, G. C. J. Am. Chem. Soc. 2000, 122, 11956 https://doi.org/10.1021/ja0022526
  24. Gilbert, A.; Baggot, J. Essentials of Molecular Photochemistry; Blackwell Scientific Publications: Oxford, 1991
  25. Pope, M.; Swenberg, C. E. Electronic Processes in Organic Crystals; Oxford University Press: Oxford, 1982
  26. Morisaki, Y.; Chujo, Y. Macromolecules 2002, 35, 587 https://doi.org/10.1021/ma011170e
  27. Wang, W.; Xu, J.; Lai, Y.-H. Org. Lett. 2003, 5, 2765 https://doi.org/10.1021/ol034413r
  28. Hwang, I.-W.; Aratani, N.; Osuka, A.; Kim, D. Bull. Korean Chem. Soc. 2005, 26, 19 https://doi.org/10.5012/bkcs.2005.26.1.019
  29. Hong, J. W.; Gaylord, B. S.; Bazan, G. C. J. Am. Chem. Soc. 2002, 124, 11868 https://doi.org/10.1021/ja027170r
  30. Hong, J. W.; Hadjar, B.; Bazan, G. C. Chem. Eur. J. 2003, 9, 3186 https://doi.org/10.1002/chem.200304776
  31. Hong, J. W.; Woo, H. Y.; Liu, B.; Bazan, G. C. J. Am. Chem. Soc. 2005, 127, 7435 https://doi.org/10.1021/ja044326+
  32. Bartholomew, G. P.; Bazan, G. C. J. Am. Chem. Soc. 2002, 124, 5183 https://doi.org/10.1021/ja0121383
  33. Bartholomew, G. P.; Bazan, G. C. Synthesis 2002, 9, 1245
  34. Moon, K.-J.; Shim, H.-K.; Lee, K.-S.; Zieba, J.; Prasad, P. N. Macromolecules 1996, 29, 861
  35. Lee, H. J.; Sohn, J.; Hwang, J.; Park, S. Y.; Choi, H.; Cha, M. Chem. Mater. 2004, 16, 456 https://doi.org/10.1021/cm0343756
  36. Bartholomew, G. P.; Ledoux, I.; Mukamel, S.; Bazan, G. C.; Zyss, J. J. Am. Chem. Soc. 2002, 124, 13480 https://doi.org/10.1021/ja0272179
  37. Bartholomew, G. P.; Rumi, M.; Pond, S. J. K.; Perry, J. W.; Tretiak, S.; Bazan, G. C. J. Am. Chem. Soc. 2004, 126, 11529 https://doi.org/10.1021/ja038743i
  38. Fayed, T. A. J. Photochem. Photobiol. A Chem. 1999, 121, 17 https://doi.org/10.1016/S1010-6030(98)00439-0
  39. Mongin, O.; Porres, L.; Moreaux, L.; Mertz, J.; Blanchard- Desce, M. Org. Lett. 2002, 4, 719
  40. Sarker, A. M.; Strehmel, B.; Neckers, D. C. Macromolecules 1999, 32, 7409 https://doi.org/10.1021/ma990805v
  41. Halpern, A. M.; Ruggles, C. J.; Zhang, X. J. Am. Chem. Soc. 1987, 109, 3748 https://doi.org/10.1021/ja00246a037
  42. Strehmel, B.; Sarker, A. M.; Malpert, J. H.; Strehmel, V.; Seifert, H.; Neckers, D. C. J. Am. Chem. Soc. 1999, 121, 1226 https://doi.org/10.1021/ja983308n
  43. Jager, W. F.; Volkers, A. A.; Neckers, D. C. Macromolecules 1995, 28, 8153 https://doi.org/10.1021/ma00128a027
  44. Schuddeboom, W.; Jonker, S. A.; Warman, J. M.; Leinhos, U.; Kuhnle, W.; Zachariasse, K. W. J. Phys. Chem. 1992, 96, 10809 https://doi.org/10.1021/j100205a041
  45. O'Connor, D. V.; Phillips, D. Time Correlated Single Photon Counting; Academic Press: London, U. K., 1984
  46. Greenham, N. C.; Samuel, I. D. W.; Hayes, G. R.; Phillips, R. T.; Kessener, Y. A. R. R.; Moratti, S. C.; Holmes, A. B.; Friend, R. H. Chem. Phys. Lett. 1995, 241, 89 https://doi.org/10.1016/0009-2614(95)00584-Q
  47. Kennedy, S. M.; Lytle, F. E. Anal. Chem. 1986, 58, 2643 https://doi.org/10.1021/ac00126a014

Cited by

  1. A Two-Photon Dye with Favorable Photophysical Properties and Ultrahigh Polarity Sensitivity Designed by Utilizing the Tautomerism of β-Diketone vol.5, pp.2, 2016, https://doi.org/10.1002/adom.201600696