DOI QR코드

DOI QR Code

Ruthenium Complex-catalyzed Highly Selective Co-oligomerization of Alkenes

  • Ura, Yasuyuki (Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University) ;
  • Tsujita, Hiroshi (Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University) ;
  • Mitsudo, Take-Aki (Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University) ;
  • Kondo, Teruyuki (Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University)
  • Published : 2007.12.20

Abstract

Ruthenium complex-catalyzed reactions often require highly qualified tuning of reaction conditions with substrates to attain high yield and selectivity of the products. In this review, our strategies for achieving characteristic ruthenium complex-catalyzed co-oligomerization of different alkenes are disclosed: 1) The codimerization of 2-norbornenes with acrylic compounds by new ruthenium catalyst systems of RuCl3(tpy)/Zn [tpy = 2,2':6',2''-terpyridine] or [RuCl2(η6-C6H6)]2/Zn in alcohols, 2) A novel synthesis of 2-alkylidenetetrahydrofurans from dihydrofurans and acrylates by zerovalent ruthenium catalysts, such as Ru(η4-cod)(η6-cot) [cod = 1,5-cyclooctadiene, cot = 1,3,5-cyclooctatriene] and Ru(η6-cot)(η2-dmfm)2 [dmfm = dimethyl fumarate], 3) Regio- and stereoselective synthesis of enamides by Ru(η6-cot)(η2-dmfm)2-catalyzed codimerization of N-vinylamides with alkenes, and 4) Unusual head-to-head dimerization of styrenes and linear codimerization of styrenes with ethylene by Ru(η6-cot)(η2-dmfm)2 catalyst in the presence of primary alcohols.

Keywords

References

  1. Industrial Organic Chemistry, 3rd ed.; Weissermel, K., Arpe, H.- J., Eds.; Wiley-VCH: Weinheim, 2004
  2. Transition Metals for Organic Synthesis, 2nd ed.; Beller, M., Bolm, C., Eds.; Wiley-VCH: Weinheim, 2004; Vols 1-2
  3. Trost, B. M. Acc. Chem. Res. 2002, 35, 695 https://doi.org/10.1021/ar010068z
  4. Applied Homogeneous Catalysis with Organometallic Compounds, 2nd Ed.; Colins, B.; Herrmann, W. A., Eds.; Wiley-VCH: New York, 2002; Vols. 1-3
  5. Parshall, G. W.; Ittel, S. D. Homogeneous Catalysis, 2nd ed.; Wiley-VCH: Weinheim, 2002
  6. Ziegler, K.; Gellert, H.; Kuhlhorn, H.; Martin, H.; Meyer, K.; Nagel, K.; Sauer, H.; Zoser, K. Angew. Chem. 1952, 64, 323 https://doi.org/10.1002/ange.19520641202
  7. Ziegler, K. Angew. Chem. 1964, 76, 545 https://doi.org/10.1002/ange.19640761302
  8. Shell Dev. Co. US Patent, 3.635.937, 3.637.636, 3.644.536, 3.644.564, 3.647.914, 3.647.915, 3.661.803, 3.686.159, 1972
  9. Crabtree, R. H. The Organometallic Chemistry of the Transition Metals, 4th Ed.; John Wiley & Sons, Inc.: New Jersey, 2005
  10. Alderson, T.; Jenner, E. L.; Lindsey, Jr., R. V. J. Am. Chem. Soc. 1965, 87, 5638 https://doi.org/10.1021/ja00952a022
  11. Britovsek, G. J. P.; Keim, W.; Mecking, S.; Sainz, D.; Wagner, T. J. Chem. Soc., Chem. Commun. 1993, 1632
  12. Britovsek, G. J. P.; Cavell, K. J.; Keim, W. J. Mol. Catal. A: Chemical 1996, 110, 77 https://doi.org/10.1016/1381-1169(96)00067-2
  13. Bayersdorfer, R.; Ganter, B.; Englert, U.; Keim, W.; Vogt, D. J. Organomet. Chem. 1998, 552, 187 https://doi.org/10.1016/S0022-328X(97)00568-8
  14. Hovestad, N. J.; Eggeling, E. B.; Heidbüchel, H. J.; Jastrzebski, J. T. B. H.; Kragl, U.; Keim, W.; Vogt, D.; van Koten, G. Angew. Chem. Int. Ed. 1999, 38, 1655 https://doi.org/10.1002/(SICI)1521-3773(19990601)38:11<1655::AID-ANIE1655>3.0.CO;2-2
  15. Eggeling, E. B.; Hovestad, N. J.; Jastrzebski, J. T. B. H.; Vogt, D.; van Koten, G. J. Org. Chem. 2000, 65, 8857 https://doi.org/10.1021/jo000433k
  16. Pillai, S. M.; Tembe, G. L.; Ravindranathan, M. J. Mol. Catal. 1993, 84, 77 https://doi.org/10.1016/0304-5102(93)80086-A
  17. Umezaki, H.; Fujiwara, Y.; Sawara, K.; Teranishi, S. Bull. Chem. Soc. Jpn. 1973, 46, 2230 https://doi.org/10.1246/bcsj.46.2230
  18. Yi, C. S.; He, Z.; Lee, D. W. Organometallics 2001, 20, 802 https://doi.org/10.1021/om000881i
  19. Wilke, G. Angew. Chem., Int. Ed. Engl. 1988, 27, 185, and references therein
  20. Kawata, N.; Maruya, K.; Mizoroki, T.; Ozaki, A. Bull. Chem. Soc. Jpn. 1974, 47, 413 https://doi.org/10.1246/bcsj.47.413
  21. Bogdanoviae, B. Adv. Organomet. Chem. 1979, 17, 105 https://doi.org/10.1016/S0065-3055(08)60322-6
  22. Ceder, R.; Muller, G.; Ordinas, J. I. J. Mol. Catal. 1994, 92, 127 https://doi.org/10.1016/0304-5102(94)00066-2
  23. Monteiro, A. L.; Seferin, M.; Dupont, J.; de Souza, R. F. Tetrahedron Lett. 1996, 37, 1157 https://doi.org/10.1016/0040-4039(95)02389-5
  24. Fassina, V.; Ramminger, C.; Seferin, M.; Monteiro, A. L. Tetrahedron 2000, 56, 7403 https://doi.org/10.1016/S0040-4020(00)00668-2
  25. Nomura, N.; Jin, J.; Park, H.; RajanBabu, T. V. J. Am. Chem. Soc. 1998, 120, 459 https://doi.org/10.1021/ja973548n
  26. Nandi, M.; Jin, J.; RajanBabu, T. V. J. Am. Chem. Soc. 1999, 121, 9899 https://doi.org/10.1021/ja992493h
  27. RajanBabu, T. V.; Nomura, N.; Jin, J.; Radetich, B.; Park, H.; Nandi, M. Chem. Eur. J. 1999, 5, 1963 https://doi.org/10.1002/(SICI)1521-3765(19990702)5:7<1963::AID-CHEM1963>3.0.CO;2-4
  28. Jin, J.; RajanBabu, T. V. Tetrahedron 2000, 56, 2145 https://doi.org/10.1016/S0040-4020(99)01097-2
  29. Bosmann, A.; Franciò, G.; Janssen, E.; Solinas, M.; Leitner, W.; Wasserscheid, P. Angew. Chem. Int. Ed. 2001, 40, 2697 https://doi.org/10.1002/1521-3773(20010716)40:14<2697::AID-ANIE2697>3.0.CO;2-W
  30. Park, H.; RajanBabu, T. V. J. Am. Chem. Soc. 2002, 124, 734 https://doi.org/10.1021/ja0172013
  31. RajanBabu, T. V. Chem. Rev. 2003, 103, 2845 and references therein https://doi.org/10.1021/cr020040g
  32. Bedford, R. B.; Betham, M.; Blake, M. E.; Garces, A.; Millar, S. L.; Prashar, S. Tetrahedron 2005, 61, 9799 https://doi.org/10.1016/j.tet.2005.06.083
  33. Grutters, M. M. P.; Müller, C.; Vogt, D. J. Am. Chem. Soc. 2006, 128, 7414 https://doi.org/10.1021/ja058095y
  34. Kumareswaran, R.; Nandi, M.; RajanBabu, T. V. Org. Lett. 2003, 5, 4345 https://doi.org/10.1021/ol0356284
  35. Yi, C. S.; He, Z.; Lee, D. W. Organometallics 2001, 20, 802 https://doi.org/10.1021/om000881i
  36. Bogdanovic, B.; Henc, B.; Loser, A.; Meister, B.; Pauling, H.; Wilke, G. Angew. Chem. Int. Ed. 1973, 12, 954 https://doi.org/10.1002/anie.197309541
  37. Muller, G.; Ordinas, J. I. J. Mol. Catal. A: Chemical 1997, 125, 97 https://doi.org/10.1016/S1381-1169(97)00082-4
  38. Marciniec, B.; Kownacki, I.; Kubicki, M. Organometallics 2001, 20, 3423 https://doi.org/10.1021/om0100683
  39. Kretschmer, W. P.; Troyanov, S. I.; Meetsma, A.; Hassen, B.; Teuben, J. H. Organometallics 1998, 17, 284 https://doi.org/10.1021/om970983h
  40. Hahn, C.; Cucciolito, M. E.; Vitagliano, A. J. Am. Chem. Soc. 2002, 124, 9038 https://doi.org/10.1021/ja0263386
  41. Mitsudo, T.; Kokuryo, K.; Takegami, Y. J. Chem. Soc., Chem. Commun. 1976, 772
  42. Mitsudo, T.; Kokuryo, K.; Shinsugi, T.; Nakagawa, Y.; Watanabe, Y.; Takegami, Y. J. Org. Chem. 1979, 44, 4492 https://doi.org/10.1021/jo00393a006
  43. Mitsudo, T.; Hori, Y.; Watanabe, Y. J. Organomet. Chem. 1987, 334, 157 https://doi.org/10.1016/0022-328X(87)80046-3
  44. Mitsudo, T.; Naruse, H.; Kondo, T.; Ozaki, Y.; Watanabe, Y. Angew. Chem., Int. Ed. Engl. 1994, 33, 580 https://doi.org/10.1002/anie.199405801
  45. Mitsudo, T.; Hori, Y.; Watanabe, Y. Bull. Chem. Soc. Jpn. 1986, 59, 3201 https://doi.org/10.1246/bcsj.59.3201
  46. Mitsudo, T.; Nakagawa, Y.; Watanabe, K.; Hori, Y.; Misawa, H.; Watanabe, H.; Watanabe, Y. J. Org. Chem. 1985, 50, 565 https://doi.org/10.1021/jo00205a005
  47. Mitsudo, T.; Nakagawa, Y.; Watanabe, H.; Watanabe, K.; Misawa, H.; Watanabe, Y. J. Chem. Soc., Chem. Commun. 1981, 496
  48. Mitsudo, T.; Zhang, S.-W.; Nagao, M.; Watanabe, Y. J. Chem. Soc., Chem. Commun. 1991, 598
  49. Mitsudo, T.; Suzuki, T.; Zhang, S.-W.; Imai, D.; Fujita, K.; Manabe, T.; Shiotsuki, M.; Watanabe, Y.; Wada, K.; Kondo, T. J. Am. Chem. Soc. 1999, 121, 1839
  50. Kakiuchi, F.; Tanaka, Y.; Sato, T.; Chatani, N.; Murai, S. Chem. Lett. 1995, 24, 679 https://doi.org/10.1246/cl.1995.679
  51. Trost, B. M.; Imi, K.; Davies, I. W. J. Am. Chem. Soc. 1995, 117, 5371 https://doi.org/10.1021/ja00124a025
  52. Murai, S.; Kakiuchi, F.; Sekine, S.; Tanaka, Y.; Kamatani, A.; Sonoda, M.; Chatani, N. Nature 1993, 66, 529
  53. Sato, T.; Kakiuchi, F.; Chatani, N.; Murai, S. Chem. Lett. 1998, 27, 893 https://doi.org/10.1246/cl.1998.893
  54. Lim, Y.-G.; Kang, J.-B.; Kim, Y. H. J. Chem. Soc., Chem. Comum. 1996, 585
  55. Ruthenium in Organic Synthesis; Murahashi, S.-I., Ed.; Wiley- VCH: Weinheim, 2004
  56. Ruthenium Catalysts and Fine Chemistry; Bruneau, C., Dixneuf, P. H., Eds.; Springer-Verlag: Berlin, 2004
  57. Mitsudo, T.; Ura, Y.; Kondo, T. Chem. Rec. 2006, 6, 107 https://doi.org/10.1002/tcr.20076
  58. Kondo, T.; Mitsudo, T. Chem. Lett. 2005, 34, 893
  59. Mitsudo, T.; Ura, Y.; Kondo, T. J. Organomet. Chem. 2004, 689, 4530 https://doi.org/10.1016/j.jorganchem.2004.08.006
  60. Mitsudo, T.; Kondo, T. Synlett 2001, 309
  61. Trost, B. M.; Frederiksen, M. U.; Rudd, M. T. Angew. Chem. Int. Ed. 2005, 44, 6630 https://doi.org/10.1002/anie.200500136
  62. Trost, B. M.; Toste, F. D.; Pinkerton, A. B. Chem. Rev. 2001, 101, 2067 https://doi.org/10.1021/cr000666b
  63. Ura, Y.; Tsujita, H.; Wada, K.; Kondo, T.; Mitsudo, T. J. Org. Chem. 2005, 70, 6623 https://doi.org/10.1021/jo050413o
  64. Faissner, R.; Huttner, G. Eur. J. Inorg. Chem. 2003, 2239
  65. Marciniec, B.; Kownacki, I.; Kubicki, M. Organometallics 2002, 21, 3263 https://doi.org/10.1021/om0200611
  66. Hilt, G.; du Mesnil, F.; Luers, S. Angew. Chem. Int. Ed. 2001, 40, 387 https://doi.org/10.1002/1521-3773(20010119)40:2<387::AID-ANIE387>3.0.CO;2-7
  67. Fujiwara, M.; Nishikawa, T.; Hori, Y. Org. Lett. 1999, 1, 1635 https://doi.org/10.1021/ol991004f
  68. Kakiuchi, F.; Tanaka, Y.; Sato, T.; Chatani, N.; Murai, S. Chem. Lett. 1995, 24, 679 https://doi.org/10.1246/cl.1995.679
  69. Masuda, K.; Ohkita, H.; Kurumatani, S.; Itoh, K. J. Organomet. Chem. 1993, 454, C13 https://doi.org/10.1016/0022-328X(93)83257-V
  70. Nikishin, G. I.; Klimova, T. E.; Ignatenko, A. V.; Kovalev, I. P. Tetrahedron Lett. 1991, 32, 1077 https://doi.org/10.1016/S0040-4039(00)74492-3
  71. El Amrani, M. A.; Mortreux, A.; Petit, F. Tetrahedron Lett. 1989, 30, 6515 https://doi.org/10.1016/S0040-4039(01)89009-2
  72. Cros, P.; Triantaphylides, C.; Buono, G. J. Org. Chem. 1988, 53, 185 https://doi.org/10.1021/jo00236a037
  73. Oehme, G.; Grassert, I.; Mennenga, H.; Baudisch, H. J. Mol. Catal. 1986, 37, 53 https://doi.org/10.1016/0304-5102(86)85137-9
  74. Bochmann, M.; Thomas, M. J. Mol. Catal. 1984, 26, 79 https://doi.org/10.1016/0304-5102(84)85021-X
  75. Grenouillet, P.; Neibecker, D.; Tkatchenko, I. J. Chem. Soc., Chem. Commun. 1983, 542
  76. Ito, T.; Takami, Y. Bull. Chem. Soc. Jpn. 1978, 51, 1220 https://doi.org/10.1246/bcsj.51.1220
  77. Ito, T.; Takahashi, K.; Takami, Y. Tetrahedron Lett. 1973, 14, 5049 https://doi.org/10.1016/S0040-4039(01)87645-0
  78. Ito, T.; Kawai, T.; Takami, Y. Tetrahedron Lett. 1972, 13, 4775 https://doi.org/10.1016/S0040-4039(01)94424-7
  79. Saegusa, T.; Ito, Y.; Tomita, S.; Kinoshita, H. J. Org. Chem. 1970, 35, 670 https://doi.org/10.1021/jo00828a027
  80. Barlow, M. G.; Bryant, M. J.; Haszeldine, R. N.; Mackie, A. G. J. Organomet. Chem. 1970, 21, 215 https://doi.org/10.1016/S0022-328X(00)90614-4
  81. Kawakami, K.; Kawata, N.; Maruya, K.; Mizoroki, T.; Ozaki, A. J. Catal. 1975, 39, 134 https://doi.org/10.1016/0021-9517(75)90289-4
  82. Kawamoto, K.; Tatani, A.; Imanaka, T.; Teranishi, S. Bull. Chem. Soc. Jpn. 1971, 44, 1239 https://doi.org/10.1246/bcsj.44.1239
  83. Mitsudo, T.; Zhang, S.-W.; Kondo, T.; Watanabe, Y. Tetrahedron Lett. 1992, 33, 341
  84. McKinney, R. J. Organometallics 1986, 5, 1752 https://doi.org/10.1021/om00139a042
  85. Schmid, H.; Naab, P.; Hayakawa, K. Helv. Chim. Acta 1978, 61, 1427 https://doi.org/10.1002/hlca.19780610427
  86. Huang, X.; Zhu, J.; Lin, Z. Organometallics 2004, 23, 4154 https://doi.org/10.1021/om049570o
  87. Brookhart, M.; Sabo-Etienne, S. J. Am. Chem. Soc. 1991, 113, 2777
  88. Brookhart, M.; Hauptman, E. J. Am. Chem. Soc. 1992, 114, 4437 https://doi.org/10.1021/ja00037a081
  89. Hauptman, E.; Sabo-Etienne, S.; White, P. S.; Brookhart, M.; Garner, J. M.; Fagan, P. J.; Calabrese, J. C. J. Am. Chem. Soc. 1994, 116, 8038
  90. DiRenzo, G. M.; White, P. S.; Brookhart, M. J. Am. Chem. Soc. 1996, 118, 6225 https://doi.org/10.1021/ja9602354
  91. Tsujita, H.; Ura, Y.; Wada, K.; Kondo, T.; Mitsudo, T. Chem. Commun. 2005, 5100
  92. Bartlett, P. A.; Meadows, J. D.; Ottow, E. J. Am. Chem. Soc. 1984, 106, 5304 https://doi.org/10.1021/ja00330a045
  93. Lygo, B. Tetrahedron 1988, 44, 6889 https://doi.org/10.1016/S0040-4020(01)86218-9
  94. Barrett, A. G. M.; Sheth, H. G. J. Org. Chem. 1983, 48, 5017 https://doi.org/10.1021/jo00173a044
  95. Lee, J. Y.; Kim, B. H. Tetrahedron Lett. 1995, 36, 3361 https://doi.org/10.1016/0040-4039(95)00541-J
  96. Solladie, G.; Dominguez, C. J. Org. Chem. 1994, 59, 3898 https://doi.org/10.1021/jo00093a022
  97. Kim, B. H.; Lee, J. Y. Tetrahedron Lett. 1993, 34, 1609 https://doi.org/10.1016/0040-4039(93)85020-W
  98. Lygo, B.; O'Connor, N. Tetrahedron Lett. 1987, 28, 3597 https://doi.org/10.1016/S0040-4039(00)95545-X
  99. Batra, S.; Srivastava, S.; Singh, K.; Chander, R.; Khanna, A. K.; Bhaduri, A. P. Bioorg. Med. Chem. 2000, 8, 2195 https://doi.org/10.1016/S0968-0896(00)00159-0
  100. Langer, P.; Bellur, E. J. Org. Chem. 2003, 68, 9742 https://doi.org/10.1021/jo034966f
  101. Langer, P.; Armbrust, H.; Eckardt, T.; Magull, J. Chem. Eur. J. 2002, 8, 1443 https://doi.org/10.1002/1521-3765(20020315)8:6<1443::AID-CHEM1443>3.0.CO;2-0
  102. Langer, P.; Holtz, E.; Karime, I.; Saleh, N. N. R. J. Org. Chem. 2001, 66, 6057 https://doi.org/10.1021/jo010303r
  103. Langer, P.; Krummel, T. Chem. Eur. J. 2001, 7, 1720 https://doi.org/10.1002/1521-3765(20010417)7:8<1720::AID-CHEM17200>3.0.CO;2-E
  104. Langer, P.; Freifeld, I. Chem. Eur. J. 2001, 7, 565 https://doi.org/10.1002/1521-3765(20010202)7:3<565::AID-CHEM565>3.0.CO;2-E
  105. Langer, P.; Eckardt, T. Angew. Chem. Int. Ed. 2000, 39, 4343 https://doi.org/10.1002/1521-3773(20001201)39:23<4343::AID-ANIE4343>3.0.CO;2-Q
  106. Langer, P.; Holtz, E. Angew. Chem. Int. Ed. 2000, 39, 3086 https://doi.org/10.1002/1521-3773(20000901)39:17<3086::AID-ANIE3086>3.0.CO;2-F
  107. Nakada, M.; Iwata, Y.; Takano, M. Tetrahedron Lett. 1999, 40, 9077 https://doi.org/10.1016/S0040-4039(99)01913-9
  108. Yamaguchi, M.; Hirao, I. Chem. Lett. 1985, 14, 337 https://doi.org/10.1246/cl.1985.337
  109. Bryson, T. A. J. Org. Chem. 1973, 38, 3428. 39 https://doi.org/10.1021/jo00959a048
  110. Scheffler, J.-L.; Bette, V.; Mortreux, A.; Nowogrocki, G.; Carpentier, J.-F. Tetrahedron Lett. 2002, 43, 2679
  111. Pound, M. K.; Davies, D. L.; Pilkington, M.; de Pina Vaz Sousa, M. M.; Wallis, J. D. Tetrahedron Lett. 2002, 43, 1915 https://doi.org/10.1016/S0040-4039(02)00138-7
  112. Hoye, T. R.; Crawford, K. B. J. Org. Chem. 1994, 59, 520 https://doi.org/10.1021/jo00082a005
  113. Nicola, T.; Vieser, R.; Eberbach, W. Eur. J. Org. Chem. 2000, 527
  114. Leonard, J.; Mohialdin, S.; Reed, D.; Ryan, G.; Jones, M. F. J. Chem. Soc., Chem. Commun. 1993, 23
  115. Trost, B. M.; Runge, T. A. J. Am. Chem. Soc. 1981, 103, 7550 https://doi.org/10.1021/ja00415a024
  116. Danishefsky, S.; Etheredge, S. J.; Dynak, J.; McCurry, P. J. Org. Chem. 1974, 39, 2658 https://doi.org/10.1021/jo00931a058
  117. Solladie, G.; Salom-Roig, X. J.; Hanquet, G. Tetrahedron Lett. 2000, 41, 551
  118. Solladie, G.; Salom-Roig, X. J.; Hanquet, G. Tetrahedron Lett. 2000, 41, 2737
  119. Batmangherlich, S.; Davidson, A. H. J. Chem. Soc., Chem. Commun. 1985, 1399
  120. Ohta, S.; Shimabayashi, A.; Hayakawa, S.; Sumino, M.; Okamoto, M. Synthesis 1985, 45
  121. Tang, E.; Huang, X.; Xu, W.-M. Tetrahedron 2004, 60, 9963 https://doi.org/10.1016/j.tet.2004.08.042
  122. Tiecco, M.; Testaferri, L.; Tingoli, M.; Bartoli, D.; Balducci, R. J. Org. Chem. 1990, 55, 429 https://doi.org/10.1021/jo00289a010
  123. Brussani, G.; Ley, S. V.; Wright, J. L.; Williams, D. J. J. Chem. Soc., Perkin Trans. 1 1986, 303 https://doi.org/10.1039/p19860000303
  124. Jackson, W. P.; Ley, S. V.; Morton, J. A. Tetrahedron Lett. 1981, 22, 2601 https://doi.org/10.1016/S0040-4039(01)90531-3
  125. Jackson, W. P.; Ley, S. V.; Whittle, A. J. J. Chem. Soc., Chem. Commun. 1980, 1173
  126. Jackson, W. P.; Ley, S. V.; Morton, J. A. J. Chem. Soc., Chem. Commun. 1980, 1028
  127. Yang, D.; Gao, Q.; Lee, C.-S.; Cheung, K.-K. Org. Lett. 2002, 4, 3271
  128. Ferraz, H. M. C.; Sano, M. K.; Nunes, M. R. S.; Bianco, G. G. J. Org. Chem. 2002, 67, 4122 https://doi.org/10.1021/jo011089+
  129. Krueger, S. A.; Bryson, T. A. J. Org. Chem. 1974, 39, 3167 https://doi.org/10.1021/jo00935a033
  130. Han, X.; Wang, X.; Pei, T.; Widenhoefer, R. A. Chem. Eur. J. 2004, 10, 6333 https://doi.org/10.1002/chem.200400459
  131. Yang, D.; Li, J.-H.; Gao, Q.; Yan, Y.-L. Org. Lett. 2003, 5, 2869 https://doi.org/10.1021/ol0349110
  132. Kato, K.; Yamamoto, Y.; Akita, H. Tetrahedron Lett. 2002, 43, 4915 https://doi.org/10.1016/S0040-4039(02)00967-X
  133. Kato, K.; Sasaki, T.; Takayama, H.; Akita, H. Tetrahedron 2003, 59, 2679 https://doi.org/10.1016/S0040-4020(03)00300-4
  134. Kato, K.; Nishimura, A.; Yamamoto, Y.; Akita, H. Tetrahedron Lett. 2001, 42, 4203 https://doi.org/10.1016/S0040-4039(01)00689-X
  135. Kato, K.; Tanaka, M.; Yamamura, S.; Yamamoto, Y.; Akita, H. Tetrahedron Lett. 2003, 44, 3089 https://doi.org/10.1016/S0040-4039(03)00547-1
  136. Gabriele, B.; Salerno, G.; Pascali, F. D.; Costa, M.; Chiusoli, G. P. J. Organomet. Chem. 2000, 593-594, 409
  137. Piotti, M. E.; Alper, H. J. Org. Chem. 1997, 62, 8484 https://doi.org/10.1021/jo971303n
  138. Cacchi, S.; Fabrizi, G.; Moro, L. J. Org. Chem. 1997, 62, 5327 https://doi.org/10.1021/jo962386v
  139. Koch, G.; Pfaltz, A. Tetrahedron: Asymmetry 1996, 7, 2213 https://doi.org/10.1016/0957-4166(96)00274-1
  140. Tsuji, J. Pure Appl. Chem. 1982, 54, 197 https://doi.org/10.1351/pac198254010197
  141. Dunkerton, L. V.; Serino, A. J. J. Org. Chem. 1982, 47, 2812 https://doi.org/10.1021/jo00135a035
  142. Furstner, A.; Stelzer, F.; Szillat, H. J. Am. Chem. Soc. 2001, 123, 11863 https://doi.org/10.1021/ja0109343
  143. Furstner, A.; Szillat, H.; Stelzer, F. J. Am. Chem. Soc. 2000, 122, 6785 https://doi.org/10.1021/ja001034+
  144. Casty, G. L.; Stryker, J. M. Organometallics 1997, 16, 3083 https://doi.org/10.1021/om970401w
  145. Takano, S.; Tomita, S.; Takahashi, M.; Ogasawara, K. Synthesis 1987, 1116
  146. Wakatsuki, Y.; Yamazaki, H. J. Organomet. Chem. 1995, 500, 349 https://doi.org/10.1016/0022-328X(95)00525-U
  147. Mitsudo, T.; Ura, Y.; Kondo, T.; Wada, K.; Tsujita, H.; Matsuki, S. (Kyoto University), WO 2007026654, 2007
  148. Tsujita, H.; Ura, Y.; Matsuki, S.; Wada, K.; Mitsudo, T.; Kondo, T. Angew. Chem. Int. Ed. 2007, 46, 5160 https://doi.org/10.1002/anie.200701356
  149. Yet, L. Chem. Rev. 2003, 103, 4283 https://doi.org/10.1021/cr030035s
  150. Shen, R.; Lin, C.; Bowman, T. E. J.; Bowman, Jr. B. J.; Porco, J. A. J. Am. Chem. Soc. 2003, 125, 7889 https://doi.org/10.1021/ja0352350
  151. Dehli, J. R.; Legros, J.; Bolm, C. Chem. Commun. 2005, 973, and references therein
  152. Catellani, M.; Chiusoli, G. P.; Costa, M. J. Organomet. Chem. 1995, 500, 69 https://doi.org/10.1016/0022-328X(95)00526-V
  153. Kondo, T.; Tanaka, A.; Kotachi, S.; Watanabe, Y. J. Chem. Soc. Chem. Commun. 1995, 413
  154. GooBen, L. J.; Rauhaus, J. E.; Deng, G. Angew. Chem. Int. Ed. 2005, 44, 4042 https://doi.org/10.1002/anie.200462844
  155. Hosokawa, T.; Takano, M.; Kuroki, Y.; Murahashi, S.-I. Tetrahedron Lett. 1992, 33, 6643
  156. Timokhin, V. I.; Stahl, S. S. J. Am. Chem. Soc. 2005, 127, 17888 https://doi.org/10.1021/ja0562806
  157. Lee, J. M.; Ahn, D.-S.; Jung, D. Y.; Lee, J.; Do, Y.; Kim, S. K.; Chang, S. J. Am. Chem. Soc. 2006, 128, 12954 https://doi.org/10.1021/ja0639315
  158. Stille, J. K.; Becker, Y. J. Org. Chem. 1980, 45, 2139 https://doi.org/10.1021/jo01299a021
  159. Krompiec, S.; Pigulla, M.; Krompiec, M.; Baj, S.; Mrowiec- , J.; Kasperczyk, J. Tetrahedron Lett. 2004, 45, 5257, and references therein https://doi.org/10.1016/j.tetlet.2004.05.023
  160. Ninomiya, I.; Tada, Y.; Kiguchi, T.; Yamamoto, O.; Naito, T. J. Chem. Soc. Perkin Trans. 1 1984, 2035 https://doi.org/10.1039/p19840002035
  161. Ninomiya, I.; Hashimoto, C.; Kiguchi, T.; Naito, T. J. Chem. Soc. Perkin Trans. 1 1984, 2911 https://doi.org/10.1039/p19840002911
  162. Lesniak, S.; Pasternak, B. Synth. Commun. 2002, 32, 875 https://doi.org/10.1081/SCC-120002697
  163. Kondo, T.; Suzuki, N.; Okada, T.; Mitsudo, T. J. Am. Chem. Soc. 1997, 119, 6187 https://doi.org/10.1021/ja970793y
  164. Ura, Y.; Utsumi, T.; Tsujita, H.; Wada, K.; Kondo, T.; Mitsudo, T. Organometallics 2006, 25, 2934 https://doi.org/10.1021/om060242t
  165. Shiotsuki, M.; Suzuki, T.; Wada, K.; Kondo, T.; Mitsudo, T. Organometallics 2000, 19, 5733 https://doi.org/10.1021/om000700c
  166. Kondo, T.; Takagi, D.; Tsujita, H.; Ura, Y.; Wada, K.; Mitsudo, T. Angew. Chem. Int. Ed. 2007, in press
  167. Barlow, M. G.; Bryant, M. J.; Haszeldine, R. N.; Mackie, A. G. J. Organomet. Chem. 1970, 21, 215 https://doi.org/10.1016/S0022-328X(00)90614-4
  168. Kawamoto, K.; Tatani, A.; Imanaka, T.; Teranishi, S. Bull. Chem. Soc. Jpn. 1971, 44, 1239 https://doi.org/10.1246/bcsj.44.1239
  169. Grenoulllet, P.; Neibecker, D.; Tkatchenko, I. Organometallics 1984, 3, 1130 https://doi.org/10.1021/om00085a034
  170. Sen, A.; La1, T.-W. Organometallics 1983, 2, 1059
  171. Wu, G.; Rheingold, L. A.; Heck, R. F. Organometallics 1987, 6, 2386 https://doi.org/10.1021/om00154a019
  172. Kaneda, K.; Kiriyama, T.; Hiraoka, T.; Imanaka, T. J. Mol. Catal. 1988, 48, 343 https://doi.org/10.1016/0304-5102(88)85017-X
  173. Jiang, Z.; Sen, A. J. Am. Chem. Soc. 1990, 112, 9655 https://doi.org/10.1021/ja00182a044
  174. Jiang, Z.; Sen, A. Organometallics 1993, 12, 1406 https://doi.org/10.1021/om00028a066
  175. Tsuchimoto, T.; Kamiyama, S.; Negoro, R.; Shirakawa, E.; Kawakami, Y. Chem. Commun. 2003, 852
  176. Kabalka, G. W.; Dong, G.; Venkataiah, B. Tetrahedron Lett. 2004, 45, 2775 https://doi.org/10.1016/j.tetlet.2004.02.023
  177. Bedford, R. B.; Betham, M.; Blake, M. E.; Garce's, A.; Millar, S. L.; Prashar, S. Tetrahedron 2005, 61, 9799 https://doi.org/10.1016/j.tet.2005.06.083
  178. Peng, J.; Li, J.; Qiu, H.; Jiang, J.; Jiang, K.; Mao, J.; Lai, G. J. Mol. Catal. A: Chemical 2006, 255, 16 https://doi.org/10.1016/j.molcata.2006.03.058
  179. Sui-Seng, C.; Groux, L. F.; Zargarian, D. Organometallics 2006, 25, 571 https://doi.org/10.1021/om050826f
  180. Sui-Seng, C.; Castonguay, A.; Chen, Y.; Gareau, D.; Groux, L. F.; Zargarian, D. Top. Catal. 2006, 37, 81 https://doi.org/10.1007/s11244-006-0008-7
  181. Dawans, F. Tetrahedron Lett. 1971, 22, 1943
  182. Henrici- Olive, G.; Olive, S.; Schmidt, E. J. Organomet. Chem. 1972, 39, 201
  183. Barthelemy, P.; Deffieux, A.; Sigwalt, P. Nouv. J. Chem. 1985, 173
  184. Grenouillet, P.; Neibecker, D.; Tkatchenko, I. Organometallics 1984, 3, 1130 https://doi.org/10.1021/om00085a034
  185. Galdi, N.; Monica, C. D.; Spinella, A.; Oliva, L. J. Mol. Catal. A: Chemical 2006, 243, 106 https://doi.org/10.1016/j.molcata.2005.08.026
  186. Higashimura, M.; Imamura, K.; Yokogawa, Y.; Sakakibara, T. Chem. Lett. 2004, 33, 728 https://doi.org/10.1246/cl.2004.728
  187. Hajra, S.; Maji, B.; Karmakar, A. Tetrahedron Lett. 2005, 46, 8599 https://doi.org/10.1016/j.tetlet.2005.09.170
  188. Kramer, B.; Averhoff, A.; Waldvogel, S. R. Angew. Chem. Int. Ed. 2002, 41, 2981 https://doi.org/10.1002/1521-3773(20020816)41:16<2981::AID-ANIE2981>3.0.CO;2-8
  189. Kondo, T.; Tsunawaki, F.; Ura, Y.; Sadaoka, K.; Iwasa, T.; Wada, K.; Mitsudo, T. Organometallics 2005, 24, 905 https://doi.org/10.1021/om0491600
  190. Yamamoto, Y.; Nakagai, Y.; Ohkoshi, N.; Itoh, K. J. Am. Chem. Soc. 2001, 123, 6372. For a review, see: ref. 28a, pp 95-128
  191. Lapointe, A. M.; Rix, F. C.; Brookhart, M. J. Am. Chem. Soc. 1997, 119, 906 https://doi.org/10.1021/ja962979n
  192. Zambelli, A.; Pellecchia, C.; Proto, A. Macromol. Symp. 1995, 89, 373 https://doi.org/10.1002/masy.19950890135
  193. Longo, P.; Proto, A.; Zambelli, A. Macromol. Chem. Phys. 1995, 196, 3015 https://doi.org/10.1002/macp.1995.021960924
  194. Nelson, J. E.; Bercaw, J. E.; Labinger, J. A. Organometallics 1989, 8, 2484 https://doi.org/10.1021/om00112a035
  195. Burger, B. J.; Santarsiero, B. D.; Trimmer, M. S.; Bercaw, J. E. J. Am. Chem. Soc. 1988, 110, 3134 https://doi.org/10.1021/ja00218a023
  196. Milet, A.; Dedieu, A.; Kapteijn, G.; van Koten, G. Inorg. Chem. 1997, 36, 3223 https://doi.org/10.1021/ic960807l

Cited by

  1. -Acetylenamines Leading to Amines with a Quaternary Carbon Center vol.13, pp.13, 2011, https://doi.org/10.1021/ol201142v
  2. Catalytic Applications of Terpyridines and their Transition Metal Complexes vol.3, pp.9, 2011, https://doi.org/10.1002/cctc.201100118
  3. Intermolecular Coupling of Alkynes with Acrylates by Recyclable Oxide-Supported Ruthenium Catalysts: Formation of Distorted Ruthenium(IV)-oxo Species on Ceria as a Key Precursor of Active Species vol.353, pp.14-15, 2011, https://doi.org/10.1002/adsc.201100415
  4. New Catalytic Performances of Ruthenium and Rhodium Complexes Directed toward Organic Synthesis with High Atom Efficiency vol.84, pp.5, 2011, https://doi.org/10.1246/bcsj.20110019
  5. Synthesis of α,β-unsaturated γ-amino esters with a quaternary center by ruthenium-catalyzed codimerization of N-acetyl α-arylenamines and acrylates vol.10, pp.1, 2012, https://doi.org/10.1039/C1OB06412F
  6. Development of Ceria-supported Ruthenium Catalysts for Green Organic Transformation Processes vol.56, pp.2, 2013, https://doi.org/10.1627/jpi.56.69
  7. Generated Ruthenium Complexes vol.78, pp.19, 2013, https://doi.org/10.1021/jo4014854
  8. Alcohol cross-coupling reactions catalyzed by Ru and Ir terpyridine complexes vol.6, pp.23, 2008, https://doi.org/10.1039/b815547j
  9. ChemInform Abstract: Ruthenium Complex-Catalyzed Highly Selective Co-Oligomerization of Alkenes vol.39, pp.15, 2008, https://doi.org/10.1002/chin.200815238
  10. Catalytic Intermolecular Tail‐to‐Tail Hydroalkenylation of Styrenes with α Olefins: Regioselective Migratory Insertion Controlled by a Nickel/N‐Heterocyclic Carbene vol.122, pp.48, 2007, https://doi.org/10.1002/ange.201001849
  11. Catalytic Intermolecular Tail‐to‐Tail Hydroalkenylation of Styrenes with α Olefins: Regioselective Migratory Insertion Controlled by a Nickel/N‐Heterocyclic Carbene vol.49, pp.48, 2010, https://doi.org/10.1002/anie.201001849
  12. Ruthenium‐ and Rhodium‐Catalyzed Strain‐Driven Cleavage and Reconstruction of the C–C Bond vol.2016, pp.7, 2007, https://doi.org/10.1002/ejoc.201501291
  13. Ruthenium(II) Complexes of 4′‐(Aryl)‐2,2′:6′,2′′‐terpyridyl Ligands as Simple Catalysts for the Transfer Hydrogenation of Ketones vol.2018, pp.36, 2018, https://doi.org/10.1002/ejic.201800585