DOI QR코드

DOI QR Code

Transition Metal-Catalyzed and -Promoted Reactions via Carbene and Vinylidene Complexes Generated from Alkynes

  • Ohe, Kouichi (Department of Energy and Hydrocarbon Chemistry, Graduate School of Engineering, Kyoto University)
  • Published : 2007.12.20

Abstract

The transition metal-induced in situ generation of carbene complexes from alkynes having a carbonyl or imino group as a nucleophilic functionality has been investigated. These reactive carbenoid species are generated with high atom efficiency through a 6-endo-dig cyclization mode based on the electrocyclization of vinylidene complexes or a 5-exo-dig cyclization mode in π-alkyne complexes, and have been found to serve as versatile intermediates in catalytic carbene transfer reactions. Highlighted and reviewed in this account are the generation and preparation of pyranylidene, furylcarbene, pyrrolylcarbene, and vinylcarbene complexes and their application to [3,3]sigmatropic rearrangement of acylcyclopropylvinylidenes, catalytic cyclopropanation reactions, [2,3]sigmatropic rearrangement or condensation reactions via ylides, ring-opening and substitution reactions with heteroaromatic compounds, and catalytic isomerization of oligoynes.

Keywords

References

  1. Zaragoza Dorwald, F. Metal Carbenes in Organic Synthesis; Wiley-VCH: Weinheim, 1999
  2. Doyle, M. P.; McKervey, M. A.; Ye, T. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds; Wiley-Interscience: New York, 1998
  3. Furstner, A. Angew. Chem. Int. Ed. 2000, 39, 3012 https://doi.org/10.1002/1521-3773(20000901)39:17<3012::AID-ANIE3012>3.0.CO;2-G
  4. Trnka, T. M.; Grubbs, R. H. Acc. Chem. Res. 2001, 34, 18 https://doi.org/10.1021/ar000114f
  5. Schrock, R. R.; Hoveyda, A. H. Angew. Chem. Int. Ed. 2003, 42, 4592 https://doi.org/10.1002/anie.200300576
  6. Metal Carbenes in Organic Synthesis; Dotz, K. H., Ed.; Topics in Organometallic Chemistry, Vol. 13; Springer-Verlag: Berlin, 2004
  7. Herondon, J. W. Coord. Chem. Rev. 2007, 251, 1158 https://doi.org/10.1016/j.ccr.2006.11.002
  8. Ohe, K.; Miki, K.; Uemura, S. J. Synth. Org. Chem. Jpn. 2004, 62, 978 https://doi.org/10.5059/yukigoseikyokaishi.62.978
  9. Miki, K.; Uemura, S.; Ohe, K. Chem. Lett. 2005, 34, 1068 https://doi.org/10.1246/cl.2005.1068
  10. Furstner, A.; Davies, P. W. Angew. Chem. Int. Ed. 2007, 46, 3410 https://doi.org/10.1002/anie.200604335
  11. Marion, N.; Nolan, S. P. Angew. Chem. Int. Ed. 2007, 46, 2750 https://doi.org/10.1002/anie.200604773
  12. Gorin, D. J.; Toste, F. D. Nature 2007, 446, 395 https://doi.org/10.1038/nature05592
  13. Bruneau, C.; Dixneuf, P. H. Angew. Chem. Int. Ed. 2006, 45, 2176 https://doi.org/10.1002/anie.200501391
  14. Zhang, W.; Moore, J. S. Adv. Synth. Catal. 2007, 349, 93 https://doi.org/10.1002/adsc.200600476
  15. Diver, S. T.; Giessert, A. J. Chem. Rev. 2004, 104, 1317 https://doi.org/10.1021/cr020009e
  16. Grubbs, R. H.; Trnka, T. M.; Sanford, M. S. Curr. Meth. Inorg. Chem. 2003, 3, 187 https://doi.org/10.1016/S1873-0418(03)80006-4
  17. Poulsen, C. S.; Madsen, R. Synthesis 2003, 1
  18. Trost, B. M.; Tanoury, G. J. J. Am. Chem. Soc. 1988, 110, 1636 https://doi.org/10.1021/ja00213a054
  19. Trost, B. M.; Hashmi, A. S. K. J. Am. Chem. Soc. 1994, 116, 2183 https://doi.org/10.1021/ja00084a084
  20. Chatani, N.; Morimoto, T.; Muto, T.; Murai, S. J. Am. Chem. Soc. 1994, 116, 6049 https://doi.org/10.1021/ja00092a098
  21. Chatani, N.; Kataoka, K.; Murai, S.; Furukawa, N.; Seki, Y. J. Am. Chem. Soc. 1998, 120, 9104 https://doi.org/10.1021/ja981877p
  22. Chatani, N.; Inoue, H.; Morimoto, T.; Muto, T.; Murai, S. J. Org. Chem. 2001, 66, 4433 https://doi.org/10.1021/jo010091y
  23. Oi, S.; Tsukamoto, I.; Miyano, S.; Inoue, Y. Organometallics 2001, 20, 3704 https://doi.org/10.1021/om010316v
  24. Pastine, S. J.; Youn, S. W.; Sames, D. Tetrahedron 2003, 59, 8859 https://doi.org/10.1016/j.tet.2003.05.003
  25. Lloyd-Jones, G. C. Org. Biomol. Chem. 2003, 1, 215 https://doi.org/10.1039/b209175p
  26. Yamamoto, Y.; Kuwabara, S.; Ando, Y.; Nagata, H.; Nishiyama, H.; Itoh, K. J. Org. Chem. 2004, 69, 6697 https://doi.org/10.1021/jo049072p
  27. Martin- Matute, B.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. J. Am. Chem. Soc. 2003, 125, 5757
  28. Nieto-Oberhuber, C.; Muñoz, M. P.; Buñuel, E.; Nevado, C.; Cardenas, D. J.; Echavarren, A. M. Angew. Chem,. Int. Ed. 2004, 43, 2402 https://doi.org/10.1002/anie.200353207
  29. Furstner, A.; Hannen, P. Chem. Commun. 2004, 2546
  30. Mamane, V.; Gress, T.; Krause, H.; Furstner, A. J. Am. Chem. Soc. 2004, 126, 8654 https://doi.org/10.1021/ja048094q
  31. Harrak, Y.; Blaszykowski, C.; Bernard, M.; Cariou, K.; Mainetti, E.; Mouriès, V.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. J. Am. Chem. Soc. 2004, 126, 8656 https://doi.org/10.1021/ja0474695
  32. Blaszykowski, C.; Harrak, Y.; Goncalves, M.-H.; Cloarec, J.-M.; Dhimane, A.-L.; Fensterbank, L.; Malacria, M. Org. Lett. 2004, 6, 3771 https://doi.org/10.1021/ol048463n
  33. Anjum, S.; Marco- Contelles, J. Tetrahedron 2005, 61, 4793 https://doi.org/10.1016/j.tet.2005.03.019
  34. Marion, N.; de Fremont, P.; Lemière, G.; Stevens, E. D.; Fensterbank, L.; Malacria, M.; Nolan, S. P. Chem. Commun. 2006, 2048
  35. Marco-Contelles, J.; Arroyo, N.; Anjum, S.; Mainetti, E.; Marion, N.; Cariou, K.; Lemiere, G.; Mouries, V.; Fensterbank, L.; Malacria, M. Eur. J. Org. Chem. 2006, 4618
  36. Jimenez-Núñez, E.; Claverie, C. K.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 5452, and references therein https://doi.org/10.1002/anie.200601575
  37. Yamamoto, Y.; Kinpara, K.; Saigoku, T.; Takagishi, H.; Okuda, S.; Nishiyama, H.; Itoh, K. J. Am. Chem. Soc. 2005, 127, 605, and references therein https://doi.org/10.1021/ja045694g
  38. Asao, N.; Aikawa, H.; Yamamoto, Y. J. Am. Chem. Soc. 2004, 126, 7458 https://doi.org/10.1021/ja0477367
  39. Kusama, H.; Funami, H.; Shido, M.; Hara, Y.; Takaya, J.; Iwasawa, N. J. Am. Chem. Soc. 2005, 127, 2709 https://doi.org/10.1021/ja044194k
  40. Kusama, H.; Iwasawa, N. Chem. Lett. 2006, 35, 1082, and references therein https://doi.org/10.1246/cl.2006.1082
  41. Kimball, D. B.; Weakley, T. J. R.; Herges, R.; Haley, M. M. J. Am. Chem. Soc. 2002, 124, 13463 https://doi.org/10.1021/ja027809r
  42. Shirtcliff, L. D.; Weakley, T. J. R.; Haley, M. M. J. Org. Chem. 2004, 69, 6979 https://doi.org/10.1021/jo049011r
  43. Ohe, K.; Kojima, M.; Yonehara, K.; Uemura, S. Angew. Chem., Int. Ed. Engl. 1996, 35, 1823 https://doi.org/10.1002/anie.199618231
  44. Manabe, T.; Yanagi, S.- i.; Ohe, K.; Uemura, S. Organometallics 1998, 17, 2942
  45. Wang, Y.; Finn, M. G. J. Am. Chem. Soc. 1995, 117, 8045 https://doi.org/10.1021/ja00135a035
  46. Ohe, K.; Miki, K.; Yokoi, T.; Nishino, F.; Uemura, S. Organometallics 2000, 19, 5525 https://doi.org/10.1021/om0006763
  47. Miki, K.; Yokoi, T.; Nishino, F.; Ohe, K.; Uemura, S. J. Organomet. Chem. 2002, 645, 228 https://doi.org/10.1016/S0022-328X(01)01328-6
  48. Casey, C. P.; Strotman, N. A.; Guzei, I. A. Organometallics 2004, 23, 4121 https://doi.org/10.1021/om040063g
  49. Ohe, K.; Yokoi, T.; Miki, K.; Nishino, F.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 526 https://doi.org/10.1021/ja017037j
  50. Miki, K.; Nishino, F.; Ohe, K.; Uemura, S. J. Am. Chem. Soc. 2002, 124, 5260 https://doi.org/10.1021/ja025776+
  51. Miki, K.; Yokoi, T.; Nishino, F.; Kato, Y.; Washitake, Y.; Ohe, K.; Uemura, S. J. Org. Chem. 2004, 69, 1557 https://doi.org/10.1021/jo0352732
  52. Nishino, F.; Miki, K.; Kato, Y.; Ohe, K.; Uemura, S. Org. Lett. 2003, 5, 2615 https://doi.org/10.1021/ol0347545
  53. Kato, Y.; Miki, K.; Nishino, F.; Ohe, K.; Uemura, S. Org. Lett. 2003, 5, 2619 https://doi.org/10.1021/ol034731q
  54. Miki, K.; Washitake, Y.; Ohe, K.; Uemura, S. Angew. Chem. Int. Ed. 2004, 43, 1857 https://doi.org/10.1002/anie.200352949
  55. Cheng, G.; Mirafzal, G. A.; Woo, L. K. Organometallics 2003, 22, 1468, and references therein https://doi.org/10.1021/om020904o
  56. Aggarwal, V. K.; Fulton, J. R.; Sheldon, C. G.; de Vicente, J. J. Am. Chem. Soc. 2003, 125, 6034 https://doi.org/10.1021/ja029573x
  57. Rautenstrauch, V. Tetrahedron Lett. 1984, 25, 3845 https://doi.org/10.1016/S0040-4039(01)91183-9
  58. Rautenstrauch, V. J. Org. Chem. 1984, 49, 950 https://doi.org/10.1021/jo00179a044
  59. Kataoka, H.; Watanabe, K.; Goto, K. Tetrahedron Lett. 1990, 31, 4181 https://doi.org/10.1016/S0040-4039(00)97576-2
  60. Bowden, B.; Cookson, R. C.; Davies, H. J. Chem. Soc., Perkin Trans. 1 1973, 2634 https://doi.org/10.1039/p19730002634
  61. Cookson, R. C.; Cramp, M. C.; Parsons, P. J. J. Chem. Soc., Chem. Commun. 1980, 197
  62. Stomerk, A. W.; Kel'in, A. V.; Gevorgyan, V. Angew. Chem. Int. Ed. 2004, 43, 2280 https://doi.org/10.1002/anie.200353535
  63. Cariou, K.; Mainetti, E.; Fensterbank, L.; Malacria, M. Tetrahedron 2004, 60, 9745 https://doi.org/10.1016/j.tet.2004.06.151
  64. Zhang, L. J. Am. Chem. Soc. 2005, 127, 16804 https://doi.org/10.1021/ja056419c
  65. Zhang, L.; Wang, S. J. Am. Chem. Soc. 2006, 128, 1442 https://doi.org/10.1021/ja057327q
  66. Zhao, J.; Hughes, C. O.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 7436 https://doi.org/10.1021/ja061942s
  67. Oh, C. H.; Kim, A.; Park, W.; Park, D. I.; Kim, N. Synlett 2006, 2781
  68. Wang, S.; Zhang, L. J. Am. Chem. Soc. 2006, 128, 8414 https://doi.org/10.1021/ja062777j
  69. Wang, S.; Zhang, L. Org. Lett. 2006, 8, 4585 https://doi.org/10.1021/ol0618151
  70. Marion, N.; Diez-Gonzalez, S.; de Fremont, P.; Noble, A. R.; Nolan, S. P. Angew. Chem. Int. Ed. 2006, 45, 3647 https://doi.org/10.1002/anie.200600571
  71. Buzas, A.; Gagosz, F. J. Am. Chem. Soc. 2006, 128, 12614 https://doi.org/10.1021/ja064223m
  72. Mainetti, E.; Mouries, V.; Fensterbank, L.; Malacria, M.; Marco- Contelles, J. Angew. Chem. Int. Ed. 2002, 41, 2132 https://doi.org/10.1002/1521-3773(20020617)41:12<2132::AID-ANIE2132>3.0.CO;2-S
  73. Soriano, E.; Ballesteros, P.; Marco-Contelles, J. Organometallics 2005, 24, 3172 https://doi.org/10.1021/om050131e
  74. Furstner, A.; Hannen, P. Chem. Eur. J. 2006, 12, 3006 https://doi.org/10.1002/chem.200501299
  75. Soriano, E.; Marco-Contelles, J. J. Org. Chem. 2007, 72, 1443. 23 https://doi.org/10.1021/jo0622983
  76. Miki, K.; Ohe, K.; Uemura, S. Tetrahedron Lett. 2003, 44, 2019 https://doi.org/10.1016/S0040-4039(03)00219-3
  77. Miki, K.; Ohe, K.; Uemura, S. J. Org. Chem. 2003, 68, 8505 https://doi.org/10.1021/jo034841a
  78. Johansson, M. J.; Gorin, D. J.; Staben, S. T.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 18002 https://doi.org/10.1021/ja0552500
  79. Nakanishi, Y.; Miki, K.; Ohe, K. Tetrahedron 2007, 63, 12138 https://doi.org/10.1016/j.tet.2007.09.064
  80. Shi, X.; Gorin, D. J.; Toste, F. D. J. Am. Chem. Soc. 2005, 127, 5802 https://doi.org/10.1021/ja051689g
  81. Prasad, B. A. B.; Yoshimoto, F. K.; Sarpong, R. J. Am. Chem. Soc. 2005, 127, 12468 https://doi.org/10.1021/ja053192c
  82. Faza, O. N.; López, C. S.; Álvarez, R.; de Lera, A. R. J. Am. Chem. Soc. 2006, 128, 2434 https://doi.org/10.1021/ja057127e
  83. Pujanauski, B. G.; Prasad, B. A. B.; Sarpong, R. J. Am. Chem. Soc. 2006, 128, 6786 https://doi.org/10.1021/ja061549m
  84. Peng, L.; Zhang, X.; Zhang, S.; Wang, J. J. Org. Chem. 2007, 72, 1192 https://doi.org/10.1021/jo0618674
  85. Smith, C. R.; Bunnelle, E. M.; Rhodes, A. J.; Sarpong, R. Org. Lett. 2007, 9, 1169 https://doi.org/10.1021/ol0701971
  86. Miki, K.; Fujita, M.; Uemura, S.; Ohe, K. Org. Lett. 2006, 8, 1741 https://doi.org/10.1021/ol0604769
  87. Ikeda, Y.; Murai, M.; Abo, T.; Miki, K.; Ohe, K. Tetrahedron Lett. 2007, 48, 6651 https://doi.org/10.1016/j.tetlet.2007.07.123
  88. Ohe, K.; Fujita, M.; Matsumoto, H.; Tai, Y.; Miki, K. J. Am. Chem. Soc. 2006, 128, 9270 https://doi.org/10.1021/ja0612955
  89. DePinto, J. T.; McMahon, R. J. J. Am. Chem. Soc. 1993, 115, 12573 https://doi.org/10.1021/ja00079a042
  90. Naro, T.; Masuda, T.; Ichimura, A. S.; Koga, N.; Iwamura, H. J. Am. Chem. Soc. 1994, 116, 6179 https://doi.org/10.1021/ja00093a017
  91. Bowling, N. P.; Halter, R. J.; Hodges, J. A.; Seburg, R. A.; Thomas, P. S.; Simmons, C. S.; Stanton, J. F.; McMahon, R. J. J. Am. Chem. Soc. 2006, 128, 3291 https://doi.org/10.1021/ja058252t
  92. Bowling, N. P.; McMahon, R. J. J. Org. Chem. 2006, 71, 5841 https://doi.org/10.1021/jo052505j
  93. Takeda, T.; Ozaki, M.; Kuroi, S.; Tsubouchi, A. J. Org. Chem. 2005, 70, 4233 https://doi.org/10.1021/jo050122f
  94. Barluenga, J.; de la Rúa, R. B.; de Saa, D.; Ballesteros, A.; Tomas, M. Angew. Chem. Int. Ed. 2005, 44, 4981 https://doi.org/10.1002/anie.200501400
  95. Barluenga, J.; Garcia-Garcia, P.; de Saa, D.; Fernandez- Rodriguez, M. A.; de la Rúa, R. B.; Ballesteros, A.; Aguilar, E.; Tomas, M. Angew. Chem. Int. Ed. 2007, 46, 2610 https://doi.org/10.1002/anie.200605197
  96. Casey, C. P.; Dzwiniel, T. L.; Kraft, S.; Guzei, I. A. Organometallics 2003, 22, 3915 https://doi.org/10.1021/om0303799
  97. Casey, C. P.; Dzwiniel, T. L. Organometallics 2003, 22, 5285 https://doi.org/10.1021/om030561+
  98. Ortin, Y.; Sournia-Saquet, A.; Lugan, N.; Mathieu, R. Chem. Commun. 2003, 1060. [Mn]
  99. Casey, C. P.; Kraft, S.; Powell, D. R. J. Am. Chem. Soc. 2000, 122, 3771 https://doi.org/10.1021/ja9945010
  100. Casey, C. P.; Kraft, S.; Powell, D. R. Organometallics 2001, 20, 2651 https://doi.org/10.1021/om0103299
  101. Casey, C. P.; Kraft, S.; Kavana, M. Organometallics 2001, 20, 3795 https://doi.org/10.1021/om010276v
  102. Casey, C. P.; Kraft, S.; Powell, D. R. J. Am. Chem. Soc. 2002, 124, 2584 https://doi.org/10.1021/ja011962o
  103. Padwa, A.; Austin, D. J.; Gareau, Y.; Kassir, J. M.; Xu, S. L. J. Am. Chem. Soc. 1993, 115, 2637 https://doi.org/10.1021/ja00060a012
  104. Kim, K.; Miller, R. L.; Lee, D. J. Am. Chem. Soc. 2005, 127, 12818 https://doi.org/10.1021/ja054875v
  105. Kim, K.; Lee, D. J. Am. Chem. Soc. 2005, 127, 18024 https://doi.org/10.1021/ja057153c
  106. van Ottero, W. A. L.; Ngidi, E. L.; de Koning, C. B.; Fernandes, M. A. Tetrahedron Lett. 2004, 45, 659 https://doi.org/10.1016/j.tetlet.2003.11.063
  107. Cho, E. J.; Kim, M.; Lee, D. Eur. J. Org. Chem. 2006, 3074
  108. Gorin, D. J.; Dube, P.; Toste, F. D. J. Am. Chem. Soc. 2006, 128, 14480 https://doi.org/10.1021/ja066694e
  109. Cho, E. J.; Kim, M.; Lee, D. Org. Lett. 2006, 8, 5413 https://doi.org/10.1021/ol062335c
  110. Lopez, S.; Herreo-Gomez, E.; Perez-Galan, P.; Nieto-Oberhuber, C.; Echavarren, A. M. Angew. Chem. Int. Ed. 2006, 45, 6029 https://doi.org/10.1002/anie.200602448

Cited by

  1. Concerted Reactions That Produce Diradicals and Zwitterions: Electronic, Steric, Conformational, and Kinetic Control of Cycloaromatization Processes vol.113, pp.9, 2013, https://doi.org/10.1021/cr4000682
  2. How to Lose a Bond in Two Ways ― The Diradical/Zwitterion Dichotomy in Cycloaromatization Reactions vol.2013, pp.13, 2013, https://doi.org/10.1002/ejoc.201201656
  3. Cyclizations of Aryl Enynes Containing Propargyl Alcohol and Diallylamine Groups to Yield Indolecarbaldehydes Induced by Ruthenium Complexes vol.2014, pp.31, 2014, https://doi.org/10.1002/ejic.201402678
  4. C–C bond migration in the cycloisomerization of oxygen-tethered 1,6-enynes vol.50, pp.40, 2014, https://doi.org/10.1039/C3CC47499B
  5. Neue Ansätze für die Synthese von Metallcarbenen vol.128, pp.32, 2016, https://doi.org/10.1002/ange.201508119
  6. C–C bond migration in the cycloisomerization of 1,6-enynes vol.3, pp.10, 2016, https://doi.org/10.1039/C6QO00224B
  7. New Approaches to the Synthesis of Metal Carbenes vol.55, pp.32, 2016, https://doi.org/10.1002/anie.201508119
  8. Development of Catalytic Carbene Transfer Reactions Using Alkynes as a Source of Carbenes vol.67, pp.11, 2009, https://doi.org/10.5059/yukigoseikyokaishi.67.1161
  9. Ruthenium-Catalyzed Functionalization of Pyrroles and Indoles with Propargyl Alcohols vol.18, pp.20, 2012, https://doi.org/10.1002/chem.201200188
  10. Ruthenium-Catalyzed Allylation-Cyclization Reactions of Cyclic 1,3-Dicarbonyl Compounds with 1-Vinyl Propargyl Alcohols vol.18, pp.48, 2012, https://doi.org/10.1002/chem.201202414
  11. Ruthenium-Catalyzed Cycloisomerization of 2,2′-Diethynyl- biphenyls Involving Cleavage of a Carbon-Carbon Triple Bond vol.22, pp.6, 2016, https://doi.org/10.1002/chem.201504937
  12. Recent developments in the synthesis of nitrogen containing five-membered polyheterocycles using rhodium catalysts pp.1532-2432, 2018, https://doi.org/10.1080/00397911.2018.1487070
  13. ChemInform Abstract: Transition Metal-Catalyzed and -Promoted Reactions via Carbene and Vinylidene Complexes Generated from Alkynes vol.39, pp.15, 2008, https://doi.org/10.1002/chin.200815239
  14. )-3-Alkylidene-1-pyrrolines by the Rhodium- Catalyzed Cyclization of Terminal Alkynes with Homopropargylic Amines vol.351, pp.14-15, 2009, https://doi.org/10.1002/adsc.200900439
  15. Theoretical Study of the Cycloaddition Reaction of a Tungsten-Containing Carbonyl Ylide vol.15, pp.45, 2007, https://doi.org/10.1002/chem.200901033
  16. Metal and Non-Metal Catalysts in the Synthesis of Five-Membered S-Heterocycles vol.16, pp.2, 2007, https://doi.org/10.2174/1570179416666181207144430