DOI QR코드

DOI QR Code

Indium and Gallium-Mediated Addition Reactions

  • Lee, Phil-Ho (National Research Laboratory of Catalytic Organic Reaction, Department of Chemistry, Kangwon National University)
  • Published : 2007.01.20

Abstract

Indium and gallium have emerged as useful metals in organic synthesis as a result of its intriguing chemical properties of reactivity, selectivity, and low toxicity. Although indium belongs to a main metal in group 13, its first ionization potential energy is very low and stable in H2O and O2. Therefore, indium-mediated organic reactions are of our current interest. On the basis of these properties of indium, many efficient indium-mediated organic reactions have been recently developed, such as the addition reactions of allylindium to carbonyl and iminium groups, the indium-mediated synthesis of 2-(2-hydroxyethyl)homoallenylsilanes, the indiummediated allylation of keto esters with allyl halides, sonochemical Reformatsky reaction using indium, the indium-mediated selective introduction of allenyl and propargyl groups at C-4 position of 2-azetidinones, the indium-mediated Michael addition and Hosomi-Sakurai reactions, the indium-mediated β-allylation, β- propargylation and β-allenylation onto α,β-unsaturated ketones, the highly efficient 1,4-addition of 1,3-diesters to conjugated enones by indium and TMSCl, and the intramolecular carboindation reactions. Also, we found gallium-mediated organic reactions such as addition reactions of propargylgallium to carbonyl group and regioselective allylgallation of terminal alkynes.

Keywords

References

  1. Li, C.-J. Tetrahedron 1996, 52, 5643
  2. Li, C.-J.; Chan, T.-H. Organic Reactions in Aqueous Media; Wiley: New York, 1997
  3. Li, C.-J. Chem. Rev. 1993, 93, 2023
  4. Li, C.-J.; Chan, T.-H. Tetrahedron 1999, 55, 11149
  5. Cintas, P. Synlett 1995, 1087
  6. Babu, G.; Perumal, P. T. Aldrichimica Acta 2000, 33, 16
  7. Araki, S.; Kamei, T.; Hirashita, T.; Yamamura, H.; Kawai, M. Org. Lett. 2000, 2, 847 https://doi.org/10.1021/ol005610i
  8. Chauhan, K. K.; Frost, C. G. J. Chem. Soc., Perkin Trans. 1 2000, 3015
  9. Pae, A. N.; Cho, Y. S. Curr. Org. Chem. 2002, 6, 715 https://doi.org/10.2174/1385272023374030
  10. Podlech, J.; Maier, T. C. Synthesis 2003, 633
  11. Araki, S.; Ito, H.; Butsugan, Y. J. Org. Chem. 1988, 53, 1831 https://doi.org/10.1021/jo00243a052
  12. Araki, S.; Ito, H.; Butsugan, Y. Synth. Commun. 1988, 18, 453 https://doi.org/10.1080/00397918808064009
  13. Araki, S.; Katsumura, N.; Kawasaki, K.-I.; Butsugan, Y. J. Chem. Soc., Perkin Trans. 1 1991, 499
  14. Araki, S.; Shimizu, T.; Jin, S.-J.; Butsugan, Y. Chem. Commun. 1991, 824
  15. Perez, I.; Sestelo, J. P.; Maestro, M. A.; Mourino, A.; Sarandeses, L. A. J. Org. Chem. 1998, 63, 10074 https://doi.org/10.1021/jo981830m
  16. Wang, L.; Sun, X.; Zhang, Y. Synth. Commun. 1998, 28, 3263 https://doi.org/10.1080/00397919808004431
  17. Araki, S.; Horie, T.; Kato, M.; Hirashita, T.; Yamamura, H.; Kawai, M. Tetrahedron Lett. 1999, 40, 2331 https://doi.org/10.1016/S0040-4039(99)00179-3
  18. Lee, P. H.; Ahn, H.; Lee, K.; Sung, S.-Y.; Kim, S. Tetrahedron Lett. 2001, 42, 37
  19. Lee, P. H.; Seomoon, D.; Lee, K.; Heo, Y. J. Org. Chem. 2003, 68, 2510 https://doi.org/10.1021/jo026600t
  20. Perez, I.; Sestelo, J. P.; Sarandeses, L. A. Org. Lett. 1999, 1, 1267 https://doi.org/10.1021/ol990939t
  21. Gelman, D.; Schumann, H.; Blum, J. Tetrahedron Lett. 2000, 41, 7555 https://doi.org/10.1016/S0040-4039(00)01295-8
  22. Lee, P. H.; Sung, S.-Y.; Lee, K. Org. Lett. 2001, 3, 3201
  23. Perez, I.; Sestelo, J. P.; Sarandeses, L. A. J. Am. Chem. Soc. 2001, 123, 4155 https://doi.org/10.1021/ja004195m
  24. Hirashita, T.; Yamamura, H.; Kawai, M.; Araki, S. Chem. Commun. 2001, 387
  25. Takami, K.; Yorimitsu, H.; Shnokubo, H.; Matsubara, S.; Oshima, K. Org. Lett. 2001, 3, 1997 https://doi.org/10.1021/ol015975i
  26. Pena, M. A.; Perez, I.; Sestelo, J. P.; Sarandeses, L. A. Chem. Commun. 2002, 2246
  27. Lee, K.; Lee, J.; Lee, P. H. J. Org. Chem. 2002, 67, 8265 https://doi.org/10.1021/jo026121u
  28. Lee, K.; Seomoon, D.; Lee, P. H. Angew. Chem. Int. Ed. 2002, 41, 3901 https://doi.org/10.1002/1521-3773(20021018)41:20<3901::AID-ANIE3901>3.0.CO;2-S
  29. Hirashita, T.; Hayashi, Y.; Mitsui, K.; Araki, S. J. Org. Chem. 2003, 68, 1309 https://doi.org/10.1021/jo026609v
  30. Lehmann, U.; Awasthi, S.; Minehan, T. Org. Lett. 2003, 5, 2405 https://doi.org/10.1021/ol0345428
  31. Lee, P. H.; Lee, S. W.; Lee, K. Org. Lett. 2003, 5, 1103 https://doi.org/10.1021/ol034167j
  32. Pena, M. A.; Sestelo, J. P.; Sarandeses, L. A. Synthesis 2003, 780
  33. Lee, P. H.; Lee, S. W.; Seomoon, D. Org. Lett. 2003, 5, 4963 https://doi.org/10.1021/ol035883o
  34. Lee, S. W.; Lee, K.; Seomoon, D.; Kim, S.; Kim, H.; Kim, H.; Shim, E.; Lee, M.; Lee, S.; Kim, M.; Lee, P. H. J. Org. Chem. 2004, 69, 4852 https://doi.org/10.1021/jo0495790
  35. Lee, P. H.; Sung, S.-Y.; Lee, K.; Chang, S. Synlett 2001, 146
  36. Rodriguez, D.; Sestelo, J. P.; Sarandeses, L. A. J. Org. Chem. 2003, 68, 2518 https://doi.org/10.1021/jo0265939
  37. Ranu, B. C.; Majee, A. Chem. Commun. 1997, 1225
  38. Fujiwara, N.; Yamamoto, Y. J. Org. Chem. 1997, 62, 2318 https://doi.org/10.1021/jo9701041
  39. Fujiwara, N.; Yamamoto, Y. J. Org. Chem. 1999, 64, 4095 https://doi.org/10.1021/jo990160x
  40. Chan, T. H.; Yang, Y. J. Am. Chem. Soc. 1999, 121, 3228 https://doi.org/10.1021/ja984359n
  41. Araki, S.; Kamei, T.; Hirashita, T.; Yamamura, H.; Kawai, M. Org. Lett. 2000, 2, 847 https://doi.org/10.1021/ol005610i
  42. Jang, T.-S.; Keum, G.; Kang, S. B.; Chung, B. Y.; Kim, Y. Synthesis 2003, 775
  43. Lee, K.; Seomoon, D.; Lee, P. H. Angew. Chem. Int. Ed. 2002, 41, 3901 https://doi.org/10.1002/1521-3773(20021018)41:20<3901::AID-ANIE3901>3.0.CO;2-S
  44. Miao, W.; Chung, L. W.; Wu, Y.-D.; Chan, T. H. J. Am. Chem. Soc. 2004, 123, 13326
  45. Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207 https://doi.org/10.1021/cr00022a010
  46. Lee, P. H.; Bang, K.; Ahn, H.; Lee, K. Bull. Korean Chem. Soc. 2001, 22, 1385
  47. Lee, P. H.; Bang, K.; Lee, K.; Lee, C.-H.; Chang, S. Tetrahedron Lett. 2000, 41, 7521
  48. Trost, B. M. Comprehensive Organic Synthesis; Pergamon Press: Oxford, 1991; p 1
  49. Yamamoto, Y. Acc. Chem. Res. 1987, 20, 243 https://doi.org/10.1021/ar00139a002
  50. Hoffmann, R. W. Angew. Chem. Int. Ed. 1982, 21, 555 https://doi.org/10.1002/anie.198205553
  51. Kim, E.; Gordon, D. M.; Schmid, W.; Whitesides, G. M. J. Org. Chem. 1993, 58, 5500 https://doi.org/10.1021/jo00072a038
  52. Bindra, W. H.; Prenner, R. H.; Schmid, W. Tetrahedron 1994, 50, 749 https://doi.org/10.1016/S0040-4020(01)80790-0
  53. Chan, T.-H.; Lee, M.- C. J. Org. Chem. 1995, 60, 4228
  54. Li, X.-R.; Loh, T.-P. Tetrahedron: Asymmetry 1996, 7, 1535
  55. Lee, P. H.; Lee, K.; Chang, S. Synth. Commun. 2001, 31, 3189 https://doi.org/10.1081/SCC-100105896
  56. Lee, P. H.; Seomoon, D.; Lee, K. Bull. Korean Chem. Soc. 2001, 22, 1380
  57. Shriner, R. L. Org. React. 1946, 1, 1
  58. Rathke, M. W. Org. React. 1975, 22, 423
  59. Gensler, W. J. Chem. Rev. 1957, 57, 265
  60. Diaper, D. G. M.; Kuksis, A. Chem. Rev. 1959, 59, 89 https://doi.org/10.1021/cr50025a003
  61. Becker, D.; Brodsky, N.; Kalo, I. J. Org. Chem. 1978, 43, 2557 https://doi.org/10.1021/jo00407a002
  62. Barco, A.; Benett, S.; Pollini, G. P. J. Org. Chem. 1980, 45, 4776 https://doi.org/10.1021/jo01311a047
  63. Klipa, D. K.; Hart, H. J. Org. Chem. 1981, 46, 2815 https://doi.org/10.1021/jo00326a050
  64. West, F. G.; Gunawardena, G. V. J. Org. Chem. 1993, 58, 5043 https://doi.org/10.1021/jo00071a008
  65. Witzemann, J. S.; Nottingham, W. D. J. Org. Chem. 1989, 54, 3258 https://doi.org/10.1021/jo00275a006
  66. March, J. Advanced Organic Chemistry; Wiley: New York, 1992; p 929
  67. Shen, Z.; Zhang, J.; Zou, H.; Yang, M. Tetrahedron Lett. 1997, 38, 2733 https://doi.org/10.1016/S0040-4039(97)00456-5
  68. Gabriel, T.; Wessjohann, L. Tetrahedron Lett. 1997, 38, 1363 https://doi.org/10.1016/S0040-4039(96)02494-X
  69. Mason, T. J.; Lorimer, J. P. Sonochemistry: Theory, Applications and Uses of Ultrasound in Chemistry; Ellis Horwood Limited: Chichester, 1988
  70. Han, B. H.; Boudjouk, P. J. Org. Chem. 1982, 47, 5030 https://doi.org/10.1021/jo00146a044
  71. Nishiyama, T.; Woodhall, J. F.; Lawson, E. N.; Kitching, W. J. Org. Chem. 1989, 54, 2184
  72. Lee, P. H.; Bang, K.; Lee, K.; Sung, S.-Y.; Chang, S. Synth. Commun. 2001, 31, 3781
  73. Bang, K.; Lee, K.; Park, Y. K.; Lee, P. H. Bull. Korean Chem. Soc. 2002, 23, 1272 https://doi.org/10.5012/bkcs.2002.23.9.1272
  74. Manhas, M. S.; Wagle, D. R.; Chiang, J.; Bose, A. K. Heterocycles 1988, 27, 1755 https://doi.org/10.3987/REV-88-384
  75. Georg, G. I. The Organic Chemistry of $\beta$-Lactams; VCH: New York, 1992
  76. Ojima, I. Adv. Asym. Synth. 1995, 1, 95 https://doi.org/10.1016/S1874-5148(06)80006-0
  77. Ojima, I.; Delaloge, F. Chem. Soc. Rev. 1997, 26, 377 https://doi.org/10.1039/cs9972600377
  78. Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Amino Acids 1999, 16, 321 https://doi.org/10.1007/BF01388175
  79. Alcaide, B.; Almendros, P.; Chem. Soc. Rev. 2001, 30, 226 https://doi.org/10.1039/b007908l
  80. Alcaide, B.; Almendros, P. Org. Prep. Proced. Int. 2001, 33, 315 https://doi.org/10.1080/00304940109356596
  81. Palomo, C.; Aizpurua, J. M.; Ganboa, I.; Oiarbide, M. Synlett 2001, 1813
  82. Alcaide, B.; Almendros, P. Synlett 2002, 381
  83. Mori, S.; Iwakura, H.; Takechi, S. Tetrahedron Lett. 1988, 29, 5391
  84. Aratani, M.; Hirai, H.; Sawada, K.; Hashimoto, M. Heterocycles 1985, 23, 1889 https://doi.org/10.3987/R-1985-08-1889
  85. Fliri H.; Mak, C.-P. J. Org. Chem. 1985, 50, 3438
  86. Fujimoto, K.; Iwano, Y.; Hirai, K. Bull. Chem. Soc. Jpn. 1986, 59, 1363 https://doi.org/10.1246/bcsj.59.1363
  87. Blaszczak, L. C.; Armour, H. K.; Hallign, N. G. Tetrahedron Lett. 1990, 31, 5693 https://doi.org/10.1016/S0040-4039(00)97934-6
  88. Tarling, C. A.; Holmes, A. B.; Markwell, R. E.; Pearson, N. D. J. Chem. Soc. Perkin Trans. 1, 1990, 1695
  89. Kang, S.-K.; Baik, T.-G.; Jiao, X.- H.; Lee, K.-J.; Lee, C. H. Synlett 1999, 447
  90. Prasad, J. S.; Liebeskind, L. S. Tetrahedron Lett. 1988, 29, 4253 https://doi.org/10.1016/S0040-4039(00)80467-0
  91. Prasad, J. S.; Liebeskind, L. S. Tetrahedron Lett. 1988, 29, 4257 https://doi.org/10.1016/S0040-4039(00)80468-2
  92. Shibasaki, M.; Nishida, A.; Ikegami, S. Chem. Commun. 1982, 1324
  93. Haruta, J.-I.; Nishi, K.; Kikuchi, K.; Matsuda, S.; Tamura, Y.; Kita, Y. Chem. Pharm. Bull. 1989, 37, 2338
  94. Kobayashi, T.; Ishida, N.; Hiraoka, T. Chem. Commun. 1980, 736
  95. Hua, D. H.; Verma, A. Tetrahedron Lett. 1985, 26, 547 https://doi.org/10.1016/S0040-4039(00)89144-3
  96. Lee, P. H.; Kim, H.; Lee, K.; Kim, M.; Noh, K.; Kim, H. Angew Chem. Int. Ed. 2005, 44, 1840 https://doi.org/10.1002/anie.200462512
  97. Posner, G. H. Org. React. 1972, 19, 1
  98. Posner, G. H. An Introduction to Synthesis Using Organocopper Reagents; Wiley- Interscience: New York, 1980
  99. Lee, P. H.; Shim, S. C.; Kim, S. Bull. Korean Chem. Soc. 1986, 7, 425
  100. Lipshutz, B. H. Synthesis 1987, 325
  101. Taylor, R. J. K. Organocopper Reagents; Oxford University Press: Oxford, 1994
  102. Lee, P. H.; Park, J.; Lee, K.; Kim, H.-C. Tetrahedron Lett. 1999, 40, 7109
  103. Lee, P. H.; Sung, S.-Y.; Lee, K. Org. Lett. 2001, 3, 3201
  104. Lee, P. H.; Sung, S.-Y.; Lee, K.; Chang, S. Synlett 2002, 146
  105. Lee, P. H.; Seomoon, D.; Lee, K. Org. Lett. 2005, 7, 343 https://doi.org/10.1021/ol047567v
  106. Lee, P. H.; Seomoon, D.; Lee, K.; Kim, S.; Kim, H.; Kim, H.; Shim, E.; Lee, M.; Lee, S.; Kim, M.; Sridhar, M. Adv. Synth. Catal. 2004, 346, 1641 https://doi.org/10.1002/adsc.200404125
  107. Lee, P. H.; Shim, E.; Lee, K.; Seomoon, D.; Kim, S. Bull. Korean Chem. Soc. 2005, 26, 157 https://doi.org/10.5012/bkcs.2005.26.1.157
  108. Araki, S.; Ito, H.; Katsumura, N.; Butsugan, Y. J. Organomet. Chem. 1989, 369, 291 https://doi.org/10.1016/0022-328X(89)85180-0
  109. Hoppe, H. A.; Lloyd-Jones, G. C.; Murry, M.; Peakman, T. M.; Walsh, K. E. Angew. Chem. Int. Ed. 1998, 37, 1545
  110. Capps, S. M.; Clarke, T. P.; Charmant, J. P. H.; Hoppe, H. A. F.; Lloyd-Jones, G. C.; Murry, M.; Peakman, T. M.; Stentifold, R. A.; Walsh, K. E.; Worthington, P. A. Eur. J. Org. Chem. 2000, 963
  111. Loh, T.-P.; Ho, D. S.-C.; Chua, G.-L.; Sim, K.-Y. Synlett 1997, 563
  112. Li, C.-J.; Chan, T.-H. Organic Reactions in Aqueous Media; Wiley: New York, 1997
  113. Loh, T.-P.; Ho, D. S.; Xu, K.- C.; Sim, K.-Y. Tetrahedron Lett. 1997, 38, 865
  114. Chan, T.-H.; Lu, W. Tetrahedron Lett. 1998, 39, 8605
  115. Li, C.-J.; Chan, T.-H. Tetrahedron 1999, 55, 11149
  116. Isaac, M. B.; Chan, T.-H. Chem. Commun. 1995, 1003
  117. Yi, X.-H.; Meng, Y.; Hua, X.-G.; Li, C.-J. J. Org. Chem. 1998, 63, 7472
  118. Nair, V.; Jayan, C. N.; Ros, S. Tetrahedron 2001, 57, 9453 https://doi.org/10.1016/S0040-4020(01)00937-1
  119. Paquette, L. A.; Han, Y.-K. J. Am. Chem. Soc. 1981, 103, 1831
  120. Corey, E. J.; Rucker, C. Tetrahedron Lett. 1982, 23, 719 https://doi.org/10.1016/S0040-4039(00)86930-0
  121. Haruta, J.; Nishi, K.; Matsuda, S.; Akai, S.; Tamura, Y.; Kita, Y. J. Org. Chem. 1990, 55, 4853 https://doi.org/10.1021/jo00303a019
  122. Shibata, I.; Kano, T.; Kanazawa, N.; Fukuoka, S.; Baba, A. Angew. Chem. Int. Ed. 2002, 41, 1389 https://doi.org/10.1002/1521-3773(20020415)41:8<1389::AID-ANIE1389>3.0.CO;2-D
  123. Lee, P. H.; Kim, H.; Lee, K.; Seomoon, D.; Kim, S.; Kim, H.; Kim, H.; Lee, M.; Shim, E.; Lee, S.; Kim, M.; Han, M.; Noh, K.; Sridar, M. Bull. Korean Chem Soc. 2004, 25, 1687 https://doi.org/10.5012/bkcs.2004.25.11.1687
  124. Lee, P. H.; Lee, K.; Sung, S.-Y.; Chang, S. J. Org. Chem. 2001, 66, 8646
  125. Hosomi, A.; Sakurai, H. J. Am. Chem. Soc. 1977, 99, 1673 https://doi.org/10.1021/ja00447a080
  126. Colvin, E. Silicon in Organic Synthesis; Butterworths: London, 1981; p 97
  127. Weber, W. P. Silicon Reagents for Organic Synthesis; Springer-Verlag: Berlin, 1983; Vol. 12, p 173
  128. Blumenkopf, T. A.; Heathcock, C. H. J. Am. Chem. Soc. 1983, 105, 2354 https://doi.org/10.1021/ja00346a041
  129. Hosomi, A. Acc. Chem. Res. 1988, 21, 200 https://doi.org/10.1021/ar00149a004
  130. Fleming, I.; Dunogues, J.; Smithers, R. Org. React. 1989, 37, 57
  131. Langkopf, E.; Schinzer, D. Chem. Rev. 1995, 95, 1375 https://doi.org/10.1021/cr00037a011
  132. Yadav, J. S.; Reddy, B. V. S.; Sadasiv, K.; Satheesh, G. Tetrahedron Lett. 2002, 43, 9695 https://doi.org/10.1016/S0040-4039(02)02373-0
  133. Nakamura, H.; Oya, T.; Murai, A. Bull. Chem. Soc. Jpn. 1992, 65, 929 https://doi.org/10.1246/bcsj.65.929
  134. Schinzer, D.; Feber, K.; Ruppelt, M. Liebigs. Ann. Chem. 1992, 139
  135. Majetich, G.; Song, J.-S.; Leigh, A. J.; Condon, S. M. J. Org. Chem. 1993, 58, 1030
  136. Kuroda, C.; Inoue, S.; Takemura, R.; Satoh, J. Y. J. Chem. Soc., Perkin Trans.1 1994, 521
  137. Onishi, Y.; Ito, T.; Yasuda, M.; Baba, A. Tetrahedron 2002, 58, 8227 https://doi.org/10.1016/S0040-4020(02)00972-9
  138. Onishi, Y.; Ito, T.; Yasuda, M.; Baba, A. Eur. J. Org. Chem. 2002, 1578
  139. Lee, P. H.; Seomoon, D.; Kim, S.; Nagaiah, K.; Damle, S. V.; Lee, K. Synthesis 2003, 2189
  140. Taylor, R. J. K. Synthesis 1985, 364
  141. Hulce, M. Org. React. 1990, 38, 225
  142. Perlmutter, P. Conjugate Addition Reactions in Organic Synthesis; Pergamon Press: Oxford, 1992
  143. Lipshutz, B. H.; Sengupta, S. Org. React. 1992, 41, 135
  144. Isaac, M. B.; Chan, T.-H. Chem. Commun. 1995, 1003
  145. Yi, X.-H.; Meng, Y.; Hua, X.-G.; Li, C.-J. J. Org. Chem. 1998, 63, 7472
  146. Nair, V.; Jayan, C. N.; Ros, S. Tetrahedron 2001, 57, 9453 https://doi.org/10.1016/S0040-4020(01)00937-1
  147. Paquette, L. A.; Han, Y.-K. J. Am. Chem. Soc. 1981, 103, 1831
  148. Corey, E. J.; Rucker, C. Tetrahedron Lett. 1982, 23, 719 https://doi.org/10.1016/S0040-4039(00)86930-0
  149. Haruta, J.; Nishi, K.; Matsuda, S.; Akai, S.; Tamura, Y.; Kita, Y. J. Org. Chem. 1990, 55, 4853 https://doi.org/10.1021/jo00303a019
  150. Shibata, I.; Kano, T.; Kanazawa, N.; Fukuoka, S.; Baba, A. Angew. Chem. Int. Ed. 2002, 41, 1389 https://doi.org/10.1002/1521-3773(20020415)41:8<1389::AID-ANIE1389>3.0.CO;2-D
  151. Lee, P. H.; Lee, K.; Kim, S. Org. Lett. 2001, 3, 3205 https://doi.org/10.1021/ol016542i
  152. Lee, K.; Kim, H.; Miura, T.; Kiyota, K.; Kusama, H.; Kim, S.; Iwasawa, N.; Lee, P. H. J. Am. Chem. Soc. 2003, 125, 9682 https://doi.org/10.1021/ja035988m
  153. Iwasawa, N.; Miura, T.; Kiyota, K.; Kusama, H.; Lee, K.; Lee, P. H. Org. Lett. 2002, 4, 4463 https://doi.org/10.1021/ol026993i
  154. Miura, T.; Kiyota, K.; Kusama, H.; Lee, K.; Kim, H.; Kim, S.; Lee, P. H.; Iwasawa, N. Org. Lett. 2003, 5, 1725 https://doi.org/10.1021/ol034365a
  155. Bergman, E. D.; Ginsburg, D.; Pappo, R. Org. React. 1959, 10, 179
  156. Hulce, M. Org. React. 1990, 38, 225
  157. Taylor, R. J. K. Organocopper Reagents; Oxford University Press: Oxford, 1994
  158. Lee, P. H.; Seomoon, D.; Lee, K.; Heo, Y. J. Org. Chem. 2003, 68, 2510 https://doi.org/10.1021/jo026600t
  159. Kang, S.-K.; Lee, S.-W.; Jung, J.; Lim, Y. J. Org. Chem. 2002, 67, 4376
  160. Salter, M. M.; Sardo-Inffiri, S. Synlett 2002, 2068
  161. Nair, V.; Ros, S.; Jayan, C. N.; Pillai, B. S. Tetrahedron 2004, 60, 1959 https://doi.org/10.1016/j.tet.2003.12.037
  162. Kang, H.-Y.; Kim, Y.-T.; Yu, Y.-K.; Cha, J. W.; Cho, Y. S.; Koh, H. Y. Synlett 2004, 45
  163. Yanada, R.; Nishimori, N.; Matsumura, A.; Fujii, N.; Takemoto, Y. Tetrahedron Lett. 2002, 43, 4585 https://doi.org/10.1016/S0040-4039(02)00880-8
  164. Takami, K.; Yorimitsu, H.; Oshima, K. Org. Lett. 2002, 4, 2993 https://doi.org/10.1021/ol026401w
  165. Lee, P. H.; Kim, S.; Lee, K.; Seomoon, D.; Kim, H.; Lee, S.; Kim, M.; Han, M.; Noh, K.; Livinghouse, T. Org. Lett. 2004, 6, 4825 https://doi.org/10.1021/ol048175r
  166. Panek, J. S. In Comprehensive Organic Synthesis; Schreiber, S. L., Ed.; Pergamon: Oxford, 1991; Vol 1, p 595
  167. Yamamoto, H. In Comprehensive Organic Synthesis; Heathcock, C. H., Ed.; Pergamon Press: Oxford, 1991; Vol 2, Chapter 1.3, pp 81-98
  168. Yamaguchi, M. In Main Group Metals in Organic Synthesis; Yamamoto, H.; Oshima, K., Eds.; Wiley-VCH: Weinheim, 2004; Vol 1, pp 307-322
  169. Denmark, S. E.; Wynn, T. J. Am. Chem. Soc. 2001, 123, 6199 https://doi.org/10.1021/ja016017e
  170. Evans, D. A.; Sweeney, Z. K.; Rovis, T.; Tedrow, J. S. J. Am. Chem. Soc. 2001, 123, 12095 https://doi.org/10.1021/ja011983i
  171. Reddy, L. R.; Gais, H.-J.; Woo, C.-W.; Raabe, G. J. Am. Chem. Soc. 2002, 124, 10427
  172. Miao, W.; Chung, L. W.; Wu, Y. D.; Chan, T. H. J. Am. Chem. Soc. 2004, 126, 13326 https://doi.org/10.1021/ja049241n
  173. Hirashita, T.; Kambe, S.; Tsuji, H.; Omori, H.; Araki, S. J. Org. Chem. 2004, 69, 5054 https://doi.org/10.1021/jo049394t
  174. Ranu, B. C.; Majee, A. Chem. Commun. 1997, 1225
  175. Fujiwara, N.; Yamamoto, Y. J. Org. Chem. 1997, 62, 2318 https://doi.org/10.1021/jo9701041
  176. Fujiwara, N.; Yamamoto, Y. J. Org. Chem. 1999, 64, 4095 https://doi.org/10.1021/jo990160x
  177. Nair, V.; Ros, S.; Jayan, C. N.; Pillai, B. S. Tetrahedron 2004, 60, 1959 https://doi.org/10.1016/j.tet.2003.12.037
  178. Yamaguchi M. In Main Group Metals in Organic Synthesis; Yamamoto, H.; Oshima, K., Eds.; Wiley-VCH: Weinheim, 2004; Vol 1, pp 307-322
  179. Andrew, P. C.; Peatt, A. C.; Raston, C. L. Tetrahedron Lett. 2004, 45, 243 https://doi.org/10.1016/j.tetlet.2003.10.188
  180. Takai, K.; Ikawa, Y. Org. Lett. 2002, 4, 1727 https://doi.org/10.1021/ol025784v
  181. Lee, P. H.; Kim, H.; Lee, K. Adv. Synth. Catal. 2005, 347, 1219 https://doi.org/10.1002/adsc.200505046
  182. Normant, J. F.; Alexakis, A. Synthesis 1981, 841
  183. Negishi, E. Pure Appl. Chem. 1981, 53, 2333 https://doi.org/10.1351/pac198153122333
  184. Oppolzer, W. Angew. Chem. Int. Ed. 1989, 28, 38 https://doi.org/10.1002/anie.198900381
  185. Knochel, P. Comprehensive Organic Synthesis; Trost, B. M.; Fleming, I., Eds.; Pergamon Press: Oxford, 1991; Vol 4, p 865
  186. Yamamoto, Y.; Asao, N. Chem. Rev. 1993, 93, 2207 https://doi.org/10.1021/cr00022a010
  187. Knochel, P. Comprehensive Organometallic Chemistry II; Able, E. W.; Stone, F. G. A.;Wilkinson, G., Eds.; Pergamon Press: Oxford, 1995; Vol 11, p 159
  188. Chatani, N.; Amishiro, N.; Morii, T.; Yamashita, T.; Murai, S. J. Org. Chem. 1995, 60, 1834 https://doi.org/10.1021/jo00111a048
  189. Takai, K.; Yamada, M.; Odaka, H.; Utimoto, K.; Fujii, T.; Furukawa, I. Chem. Lett. 1995, 315
  190. Yeon, S. H.; Han, J. S.; Hong, E.; Do, Y.; Jung, I. N. J. Organomet. Chem. 1995, 499, 159 https://doi.org/10.1016/0022-328X(95)00323-I
  191. Asao, N.; Matsukawa, Y.; Yamamoto, Y. Chem. Commun. 1996, 1513
  192. Asao, N.; Yoshikawa, E.; Yamamoto, Y. J. Org. Chem. 1996, 61, 4874 https://doi.org/10.1021/jo960779o
  193. Araki, S.; Ito, H.; Butsugan, Y. Appl. Organomet. Chem. 1988, 2, 475 https://doi.org/10.1002/aoc.590020511
  194. Yamaguchi, M.; Sotokawa, T.; Hirama, M. Chem. Commun. 1997, 743
  195. Tsuji, T.; Usugi, S.-I.; Yorimitsu, H.; Shinokubo, H.; Matsubara, S.; Oshima, K. Chem. Lett. 2002, 2
  196. Nair, V.; Ros, S.; Jayan, C. N.; Pillai, B. S. Tetrahedron 2004, 60, 1959 https://doi.org/10.1016/j.tet.2003.12.037
  197. Yamaguchi, M. Main Group Metals in Organic Synthesis; Yamamoto, H.; Oshima, K., Eds.; Wiley-VCH: Weinheim, 2004; Vol 1, pp 307-322
  198. Andrew, P. C.; Peatt, A. C.; Raston, C. L. Tetrahedron Lett. 2004, 45, 243 https://doi.org/10.1016/j.tetlet.2003.10.188
  199. Lee, P. H.; Heo, Y.; Seomoon, D.; Kim, S.; Lee, K. Chem. Commun. 2005, 1874

Cited by

  1. An Effective Diels-Alder Reaction of Vinyl Allenols with Dienophiles vol.2011, pp.7, 2011, https://doi.org/10.1002/ejoc.201001148
  2. Palladium-Catalyzed Allyl Cross-Coupling Reactions with In Situ Generated Organoindium Reagents vol.6, pp.8, 2011, https://doi.org/10.1002/asia.201000890
  3. Tungsten and molybdenum catalyst-mediated cyclisation of N-propargyl amides vol.9, pp.12, 2011, https://doi.org/10.1039/c1ob05512g
  4. Indium-Mediated Addition of γ-Substituted Allylic Halides to N-Aryl α-Imino Esters: Diastereoselective Production of β,β′-Disubstituted α-Amino Acid Derivatives with Two Contiguous Stereocenters vol.2012, pp.23, 2012, https://doi.org/10.1002/ejoc.201200254
  5. An Efficient Synthesis of Substituted Quinolines via Indium(III) Chloride Catalyzed Reaction of Imines with Alkynes vol.33, pp.1, 2012, https://doi.org/10.5012/bkcs.2012.33.1.43
  6. Organoindium Reagents: The Preparation and Application in Organic Synthesis vol.113, pp.1, 2013, https://doi.org/10.1021/cr300051y
  7. Construction of Functionalized Carbocycles Having Contiguous Tertiary Carbinol and All-Carbon Stereogenic Centers vol.2013, pp.12, 2013, https://doi.org/10.1002/ejoc.201201382
  8. Comparative Studies on Conventional and Ultrasound-Assisted Synthesis of Novel Homoallylic Alcohol Derivatives Linked to Sulfonyl Dibenzene Moiety in Aqueous Media vol.2013, pp.2090-9071, 2013, https://doi.org/10.1155/2013/364036
  9. Cooperative Titanocene and Phosphine Catalysis: Accelerated C–X Activation for the Generation of Reactive Organometallics vol.78, pp.2, 2013, https://doi.org/10.1021/jo301726v
  10. Catalytic Use of Elemental Gallium for Carbon–Carbon Bond Formation vol.138, pp.40, 2016, https://doi.org/10.1021/jacs.6b06767
  11. Lewis Acid-Catalyzed Selective [2 + 2]-Cycloaddition and Dearomatizing Cascade Reaction of Aryl Alkynes with Acrylates vol.139, pp.38, 2017, https://doi.org/10.1021/jacs.7b07997
  12. Indium(III)-Catalyzed Hydration and Hydroalkoxylation of α,β-Unsaturated Ketones in Aqueous Media vol.360, pp.14, 2018, https://doi.org/10.1002/adsc.201800301
  13. Three-Component Indium-Mediated Domino Allylation of 1H-Indole-3-carbaldehyde with Electron-Rich (Hetero)arenes: Highly Efficient Access to Variously Functionalized Indolylbutenes vol.2008, pp.16, 2008, https://doi.org/10.1002/ejoc.200701160
  14. Novel Syntheses of [6,7,n]-Benzazepinone and [6,6,n]-Benzophenanthridinone Derivatives by Rhodium-catalyzed Cyclization of o-(n-Cyanoalkynyl)benzaldehydes vol.28, pp.11, 2007, https://doi.org/10.5012/bkcs.2007.28.11.1927
  15. Cooperative Catalysis by Indium and Palladium for the Allyl Cross-Coupling Reactions vol.28, pp.11, 2007, https://doi.org/10.5012/bkcs.2007.28.11.1929
  16. Indium and Gallium-Mediated Addition Reactions vol.38, pp.19, 2007, https://doi.org/10.1002/chin.200719231
  17. Indium-mediated allylation/propargylation of α-diazoketones: a facile synthesis of 1-bromo-2-alkyl- or 2-arylpent-4-en-2-ols vol.48, pp.38, 2007, https://doi.org/10.1016/j.tetlet.2007.07.136
  18. Metal-Mediated Diastereoselective Allylation Reaction of Chiral α,β-Epoxy Aldehyde. Part 2 vol.29, pp.9, 2007, https://doi.org/10.5012/bkcs.2008.29.9.1663
  19. Asymmetric indium-mediated Barbier-type allylation reactions with ketones to form homoallylic alcohol products vol.49, pp.3, 2007, https://doi.org/10.1016/j.tetlet.2007.11.089
  20. Stereoselective Synthesis of 4-Alkyl- or 4-Aryl-3-ethoxycarbonyl-2-halo-1,3-dienes from the Reaction of Allenols Having Ethoxycarbonyl Group with Indium Trihalide vol.30, pp.2, 2007, https://doi.org/10.5012/bkcs.2009.30.2.471
  21. Synthetic Studies on Tedanolide:Stereoselective Synthesis of the C13-C21 Fragment vol.30, pp.3, 2007, https://doi.org/10.5012/bkcs.2009.30.3.537
  22. Efficient Synthetic Method of Z-Selective 2-Halo-1,3-dienes from Reactions of Allenols Possessing Ethoxycarbonyl and Vinyl Group with Indium Trihalide vol.31, pp.3, 2007, https://doi.org/10.5012/bkcs.2010.31.03.645
  23. An Efficient Synthesis of α,α-Diallyl Carbinols from Esters Activated with Amides via an In-Mediated Barbier Type Allylation vol.31, pp.6, 2007, https://doi.org/10.5012/bkcs.2010.31.6.1765
  24. Synthesis of Dienamides via the Reaction of Nitrile with Allylindium Reagents and Intramolecular Acyl Group Quenching Cascade vol.31, pp.8, 2010, https://doi.org/10.5012/bkcs.2010.31.8.2351
  25. Recent advances in allylindium reagents in organic synthesis vol.66, pp.35, 2010, https://doi.org/10.1016/j.tet.2010.05.103
  26. A Mild, Efficient, and Selective Debromination of vic-Dibromides to Alkenes with Cp2TiCl2/Ga System vol.31, pp.10, 2007, https://doi.org/10.5012/bkcs.2010.31.10.2757
  27. Synthesis of Imidazo[1,5-α]quinolines and Imidazo[5,1-α]isoquinolines via the In-Mediated Allylation of Reissert Compounds vol.31, pp.10, 2010, https://doi.org/10.5012/bkcs.2010.31.10.3031
  28. Indium/Cu(II)-mediated one-pot synthesis of unsymmetrical diaryl amines from aryl boronic acids and azides vol.52, pp.20, 2011, https://doi.org/10.1016/j.tetlet.2011.03.022
  29. Palladium-Catalyzed Cross-Coupling Reaction and Gold-Catalyzed Cyclization for Preparation of Ethyl 2-Aryl 2,3-Alkadienoates and α-Aryl γ-Butenolides vol.32, pp.8, 2007, https://doi.org/10.5012/bkcs.2011.32.8.2911
  30. Palladium-Catalyzed Cross-Coupling Reaction and Gold-Catalyzed Cyclization for Preparation of Ethyl 2-Aryl 2,3-Alkadienoates and α-Aryl γ-Butenolides vol.32, pp.8, 2007, https://doi.org/10.5012/bkcs.2011.32.8.2911
  31. Diastereoselective Construction of 3‐Aminooxindoles with Adjacent Stereocenters: Stereocontrolled Addition of γ‐Substituted Allylindiums to Isatin Ketimines vol.2015, pp.19, 2015, https://doi.org/10.1002/ejoc.201500340
  32. Insights into the Composition and Structural Chemistry of Gallium(I) Triflate vol.133, pp.3, 2007, https://doi.org/10.1002/ange.202010837
  33. Insights into the Composition and Structural Chemistry of Gallium(I) Triflate vol.60, pp.3, 2007, https://doi.org/10.1002/anie.202010837