DOI QR코드

DOI QR Code

A Novel Acid-Base Catalyzed Sol-Gel Synthesis of Highly Active Mesoporous TiO2 Photocatalysts

  • Khan, Romana (Department of Applied Chemistry, Kyungpook National University) ;
  • Kim, Sun-Woo (Department of Applied Chemistry, Kyungpook National University) ;
  • Kim, Tae-Jeong (Department of Applied Chemistry, Kyungpook National University) ;
  • Lee, Hyo-Sun (Department of Chemistry, Kyungpook National University)
  • Published : 2007.11.20

Abstract

A new synthetic strategy based on the acid-base catalyzed sol-gel method was developed for the preparation of a series of mesoporous TiO2 nanoparticles. A key feature of the method involves a gradual change in pH (0.8- 9) during the sol-gel transition, which guarantees easy introduction of mesoporosity without relying on the well-established sonochemical or template approach. In addition, this method leads to the exclusive formation of the anatase phase stable enough to the calcination temperature up to 600 oC. The physicochemical properties of the particles in the series were characterized by various spectroscopic and analytical techniques such as wide-angle XRD, SAXRD, BET surface area, FE-SEM, TEM, FT-IR, TGA, and XPS. The photocatalytic efficiency of these materials was investigated for the oxidation of toluene under UV-irradiation. All but T-ad in the series exhibited high photocatalytic activity pushing the reaction into completion within 3 h. The reaction followed the first order kinetics, and the rate reaches as high as 3.9 × 10?2/min which exceeds the one with the commercially available Degussa P-25 by a factor of 3.2. When comparison is made among the catalysts, the reactivity increases with increase in the calcination temperature which in turn increases the crystallinity of the anatase phase, thus revealing the following rate orders: T-3 < T-4 < T-5 < T-6.

Keywords

References

  1. Hoffmann, M. R.; Martin, S. T.; Choi, W.; Bahnemann, D. W. Chem. Rev. 1995, 95, 69 https://doi.org/10.1021/cr00033a004
  2. Photocatalysis Science and Technology; Kaneko, M.; Okure, I., Eds.; Springer-Verlag: New York, 2002; pp 29-47
  3. Mills, A.; Porter, G. J. Chem. Soc. Faraday Trans. 1982, 78, 3659 https://doi.org/10.1039/f19827803659
  4. Bickley, R. I.; Gonzalez-Carreno, T.; Lees, J. S.; Palmisano, L.; Tilley, R. J. D. J. Solid-State Chem. 1991, 92, 178
  5. Ohtani, B.; Zhang, S.-W.; Nishimoto, S.-I.; Kagiya, T. J. Photochem. Photobiol. A 1992, 64, 223
  6. Sclafani, A.; Palmisano, L.; Schiavello, M. J. Phys. Chem. 1990, 94, 829 https://doi.org/10.1021/j100365a058
  7. Chen, M.-L.; Bae, J.-S.; Oh, W.-C. Bull. Korean Chem. Soc. 2006, 27, 1423 https://doi.org/10.5012/bkcs.2006.27.9.1423
  8. Sol-Gel Science: The Physics and Chemistry of Sol-Gel Processing; Brinker, C. J.; Scherer, G. W., Eds.; Academic Press: Boston, 1990
  9. Pecchi, G.; Reyes, P.; Lopez, T.; Gomez, R.; Moreno, A.; Fierro, J. L. G. J. Chem. Technol. Biotechnol. 2002, 77, 944 https://doi.org/10.1002/jctb.660
  10. Yoldas, B. E. J. Mater. Sci. 1986, 21, 1087 https://doi.org/10.1007/BF01117399
  11. Barringer, E. A.; Bowen, H. K. J. Am. Ceram. Soc. 1982, 65, 199
  12. Montoya, I. A.; Viveros, T. J.; Dominguez, M.; Canales, L. A.; Schifter, I. Catal. Lett. 1992, 15, 207 https://doi.org/10.1007/BF00770913
  13. Ding, X.-Z.; Liu, X.-H. Materials Science and Engineering A 1997, 224, 210
  14. Ward, D. A.; Ho, E. I. Ind. Eng. Chem. Res. 1995, 34, 421 https://doi.org/10.1021/ie00041a001
  15. Terabe, K.; Kato, K.; Miyazaki, H.; Yamaguchi, S.; Imai, A.; Iguchi, Y. J. Mater. Sci. 1994, 29, 1617 https://doi.org/10.1007/BF00368935
  16. Song, K. C.; Pratsinis, S. E. J. Am. Ceram. Soc. 2001, 84, 92 https://doi.org/10.1111/j.1151-2916.2001.tb00613.x
  17. Bosc, F.; Ayral, A.; Albouy, P.-A.; Guizard, C. Chem. Mater. 2003, 15, 2463 https://doi.org/10.1021/cm031025a
  18. Yu, J.; Su,Y.; Cheng, B.; Zhou, M. J. Mol. Catal. A: Chemical 2006, 258, 104 https://doi.org/10.1016/j.molcata.2006.05.036
  19. Sakthivel, S.; Hidalgo, M. C.; Bahnemann, D. W.; Geissen, S.-U.; Murugesan, V.; Vogelpohl, A. Applied Catalysis B: Environmental 2006, 63, 31
  20. Elements of X-ray Diffraction, 2nd ed.; Cullity, B. D., Ed.; Addison-Wesley: Reading, 1978; p 102
  21. Wang, H.; Miao, J.-J.; Zhu, J.-M.; Ma, H.-M.; Zhu, J.-J.; Chen, H.-Y. Langmuir 2004, 20, 11738 https://doi.org/10.1021/la0477892
  22. Wang, Y.; Chen, S.-G.; Tang, X.-H.; Palchik, O.; Zaban, A.; Gedanken, A. J. Mater. Chem. 2001, 11, 521
  23. Antonelli, D. M. Micropor. Mesopor. Mater. 1999, 30, 315 https://doi.org/10.1016/S1387-1811(99)00042-6
  24. Wang, X.; Yu, J. C.; Ho, C.; Hou, Y.; Fu, X. Langmuir 2005, 21, 2552 https://doi.org/10.1021/la047979c
  25. Wang, Y.; Tang, X.; Yin, L.; Huang, W.; Hacohen, Y. R.; Gedanken, A. Adv. Mater. 2000, 12, 1183 https://doi.org/10.1002/1521-4095(200008)12:16<1183::AID-ADMA1183>3.0.CO;2-X
  26. Yang, P.; Zhao, D.; Margolese, D. I.; Chmelka, B. F.; Stucky, G. D. Chem. Mater. 1999, 11, 2813 https://doi.org/10.1021/cm990185c
  27. Peiro, A. M.; Peral, J.; Domingo, C.; Momenech, X.; Ayllon, J. A. Chem. Mater. 2001, 13, 2567 https://doi.org/10.1021/cm0012419
  28. Biniak, S.; Szymanski, G.; Siedlewski, J.; Swiatkowski, A. Carbon 1799, 35, 810
  29. Sing, K. S. W.; Everett, D. H.; Haul, R. A. W.; Moscou, L.; Pierotti, R. A.; Rouquerol, J.; Siemieniewska, T. Pure and Applied Chemistry 1985, 57, 603 https://doi.org/10.1351/pac198557040603
  30. Yu, J.; Zhao, X. Mater. Res. Bull. 2000, 35, 1293 https://doi.org/10.1016/S0025-5408(00)00327-5
  31. Patil, K. R.; Sathaye, S. D.; Khollam, Y. B.; Deshpande, S. B.; Pawaskar, N. R.; Mandale, A. B. Mater. Lett. 2000, 57, 1775 https://doi.org/10.1016/S0167-577X(02)01067-4
  32. Linsebigler, L. A.; Lu, G.; Yates, T. J. Chem. Rev. 1995, 95, 735 https://doi.org/10.1021/cr00035a013
  33. Inagaki, M.; Nonaka, R.; Tryba, B.; Morawski, A. W. Chemosphere 2006, 64, 437 https://doi.org/10.1016/j.chemosphere.2005.11.052

Cited by

  1. Synthesis, Characterization, and Application of Zr,S Co-doped TiO2 as Visible-light Active Photocatalyst vol.29, pp.6, 2007, https://doi.org/10.5012/bkcs.2008.29.6.1217
  2. Comparative study of the photocatalytic performance of boron-iron Co-doped and boron-doped TiO2 nanoparticles vol.112, pp.1, 2007, https://doi.org/10.1016/j.matchemphys.2008.05.030
  3. Synthesis of Nanocrystalline ZnFe2O4 by Polymerized Complex Method for its Visible Light Photocatalytic Application: An Efficient Photo-oxidant vol.30, pp.8, 2007, https://doi.org/10.5012/bkcs.2009.30.8.1738