DOI QR코드

DOI QR Code

Fluorene-Based Conjugated Copolymers Containing Hexyl-Thiophene Derivatives for Organic Thin Film Transistors

  • Kong, Ho-Youl (Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology) ;
  • Chung, Dae-Sung (Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Kang, In-Nam (Department of Chemistry, The Catholic University of Korea) ;
  • Lim, Eun-Hee (Melville Laboratory for Polymer Synthesis, Department of Chemistry, University of Cambridge) ;
  • Jung, Young-Kwan (Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology) ;
  • Park, Jong-Hwa (Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology) ;
  • Park, Chan-Eon (Polymer Research Institute, Department of Chemical Engineering, Pohang University of Science and Technology) ;
  • Shim, Hong-Ku (Department of Chemistry and School of Molecular Science (BK21), Korea Advanced Institute of Science and Technology)
  • Published : 2007.11.20

Abstract

Two fluorene-based conjugated copolymers containing hexyl-thiophene derivatives, PF-1T and PF-4T, were synthesized via the palladium-catalyzed Suzuki coupling reaction. The number-average molecular weights (Mn) of PF-1T and PF-4T were found to be 19,100 and 13,200, respectively. These polymers were soluble in common organic solvents such as chloroform, chlorobenzene, toluene, etc. The UV-vis absorption maximum peaks of PF-1T and PF-4T in the film state were found to be 410 nm and 431 nm, respectively. Electrochemical characterization revealed that these polymers have low highest occupied molecular orbital (HOMO) levels, indicating good resistance against oxidative doping. Thin film transistor devices were fabricated using the top contact geometry. PF-1T showed much better thin-film transistor performance than PF-4T. A thin film of PF- 1T gave a saturation mobility of 0.001-0.003 cm2 V?1 s?1, an on/off ratio of 1.0 × 105, and a small threshold voltage of ?8.3 V. To support TFT performance, we carried out DSC, AFM, and XRD measurements.

Keywords

References

  1. Burroughes, J. H.; Bradley, D. D. C.; Brown, A. R.; Marks, R. N.; Mackey, K.; Friend, R. H.; Burns, P. L.; Holmes, A. B. Nature (London) 1990, 347, 539 https://doi.org/10.1038/347539a0
  2. Friend, R. H.; Gymer, R. W.; Holmes, A. B.; Burroughes, J. H.; Marks, R. N.; Taliani, C.; Bradley, D. D. C.; Dos Santos, D. A.; Bredas, J. L.; Logdlund, M.; Salanek, W. R. Nature (London) 1999, 397, 121 https://doi.org/10.1038/16393
  3. Shim, H.-K.; Jin, J.-I. Adv. Polym. Sci. 2002, 158, 193
  4. Dimitrakopoulos, C.; Malenfant, P. Adv. Mater. 2002, 14, 99 https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
  5. Katz, H.; Bao, Z. J. Phys. Chem. B 2000, 104, 671-678 https://doi.org/10.1021/jp992853n
  6. Horowitz, G. J. Mater. Res. 2004, 19, 1946-1962 https://doi.org/10.1557/JMR.2004.0266
  7. Schmidt-Mende, L.; Fechtenkotter, A.; Mullen, K.; Moons, E.; Friend, R. H.; MacKenzie, J. D. Science 2001, 293, 1119
  8. Brabec, C. J.; Sariciftci, N. S.; Hummelen, J. C. Adv. Funct. Mater. 2001, 11, 15 https://doi.org/10.1002/1616-3028(200102)11:1<15::AID-ADFM15>3.0.CO;2-A
  9. Coakley, K. M.; McGhee, M. D. Chem. Mater. 2004, 16, 4533-4542 https://doi.org/10.1021/cm049654n
  10. Klauk, H.; Jackson, N. Solid State Technol. 2000, 43, 63
  11. Gelinck, G. H.; Geuns, T. C. T.; De Leeuw, D. M. Appl. Phys. Lett. 2000, 77, 1487 https://doi.org/10.1063/1.1290728
  12. Son, J.-H.; Kang, I.-N.; Oh, S.-Y.; Park, J.-W. Bull. Korean Chem. Soc. 2007, 28, 995-998 https://doi.org/10.5012/bkcs.2007.28.6.995
  13. Ong, B. S.; Wu, Y.; Liu, P.; Gardner, S. J. Am. Chem. Soc. 2004, 126, 3378-3379 https://doi.org/10.1021/ja039772w
  14. Kim, Y. M.; Lim, E.; Kang, I.-N.; Jung, B.-J.; Lee, J.; Koo, B. W.; Do, L.-M.; Shim, H.-K. Macromolecules 2006, 39, 4081-4085 https://doi.org/10.1021/ma060567l
  15. Mcculloch, I.; Heeney, M.; Bailey, C.; Genevicus, K.; Macdonald, I.; Shkunov, M.; David, S.; Tierney, S.; Wagner, R.; Zhang, W.; Chabinyc, M. L.; Kline, R. J.; Mcgehee, M. D.; Toney, M. F. Nature Materials 2006, 5, 328 https://doi.org/10.1038/nmat1612
  16. Lim, E.; Jung, B.-J.; Shim, H.-K. Macromolecules 2003, 35, 4288
  17. Pommerehe, J.; Vestweber, H.; Guss, W.; Mahrt, R.; Bassler, H. H.; Porsch, M.; Daub, J. Adv. Mater. 1995, 7, 551-554 https://doi.org/10.1002/adma.19950070608
  18. Meng, H.; Zheng, J.; Lovinger, A. J.; Wang, B.-C.; Patten, P. G. V.; Bao, Z. Chem. Mater. 2003, 15, 1778-1787 https://doi.org/10.1021/cm020866z
  19. Grell, M.; Bradley, D. D. C.; Ungar, G.; Hill, J.; Whitehead, K. S. Macromolecules 1999, 32, 5810 https://doi.org/10.1021/ma990741o
  20. Kawana, S.; Durrell, M.; Lu, J.; Macdonald, J. E.; Grell, M.; Bradley, D. D. C.; Jukes, C.; Jones, R. A. L.; Bennett, S. L. Polymer 2002, 43, 1907 https://doi.org/10.1016/S0032-3861(01)00753-4
  21. Yamamoto, T.; Kokubo, H.; Morikita, T. J. Polym. Sci., Part B: Polym. Phys. 2001, 39, 1713 https://doi.org/10.1002/polb.1143
  22. Bao, Z.; Dodabalapur, A.; Lovinger, A. J. Appl. Phys. Lett. 1996, 69, 4108 https://doi.org/10.1063/1.117834
  23. Kline, R. J.; McGehee, M. D.; Kadnikova, E. N.; Liu, J.; Frechet, J. M. J.; Toney, M. F. Macromolecules 2005, 38, 3312-3319 https://doi.org/10.1021/ma047415f
  24. Dimitrakoupoulos, C. D.; Melenfant, P. R. L. Adv. Mater. 2002, 14, 99-117 https://doi.org/10.1002/1521-4095(20020116)14:2<99::AID-ADMA99>3.0.CO;2-9
  25. Lim, E.; Jung, B.-J.; Lee, J.; Shim, H.-K.; Lee, J.-I.; Yang, Y. S.; Do, L.-M. Macromolecules 2005, 38, 4531 https://doi.org/10.1021/ma048128e

Cited by

  1. Molecular Engineering of Carbazole Dyes for Efficient Dye-Sensitized Solar Cells vol.34, pp.5, 2013, https://doi.org/10.5012/bkcs.2013.34.5.1533
  2. Effects of Olefin Content and Alkyl Chain Placement on Optoelectronic and Morphological Properties in Poly(thienylene vinylenes) vol.46, pp.13, 2013, https://doi.org/10.1021/ma4009115
  3. Symmetrically functionalized diketopyrrolopyrrole with alkylated thiophene moiety: from synthesis to electronic devices applications vol.49, pp.12, 2014, https://doi.org/10.1007/s10853-014-8116-4
  4. Vacuum-depositable thiophene- and benzothiadiazole-based donor materials for organic solar cells vol.39, pp.12, 2015, https://doi.org/10.1039/C5NJ01860A
  5. Effect of monomers’ structure on self-acid-assisted polycondensation for the synthesis of poly(3,4-ethylenedioxythiophene) and homopolythiophene vol.6, pp.6, 2015, https://doi.org/10.1039/C4PY01070A
  6. Synthesis and properties of phenothiazylene vinylene-based polymers: New organic semiconductors for field-effect transistors and solar cells vol.48, pp.3, 2010, https://doi.org/10.1002/pola.23814
  7. Solution-Processable Field-Effect Transistors Fabricated Using Aryl Phenoxazine Based Polymers as the Active Layer vol.30, pp.10, 2007, https://doi.org/10.5012/bkcs.2009.30.10.2371
  8. Synthesis and characterization of poly(1,4-bis((E)-2-(3-dodecylthiophen-2-yl)vinyl)benzene) derivatives vol.48, pp.18, 2007, https://doi.org/10.1002/pola.24174
  9. Synthesis and properties of phenothiazylene vinylene and bithiophene-based copolymers for organic thin film transistors vol.161, pp.1, 2007, https://doi.org/10.1016/j.synthmet.2010.10.036
  10. Efficient Synthesis of a Regioregular Oligothiophene Photovoltaic Dye Molecule, MK‐2, and Related Compounds: A Cooperative Hypervalent Iodine and Metal‐Catalyzed Synthetic Route vol.19, pp.6, 2007, https://doi.org/10.1002/chem.201203503