DOI QR코드

DOI QR Code

Production of Hydrogen and Carbon Nanotubes from Catalytic Decomposition of Methane over Ni:Cu/Alumina Modified Supported Catalysts

  • 발행 : 2007.07.20

초록

Hydrogen gas and carbon nanotubes along with nanocarbon were produced from commercial natural gas using fixed bed catalyst reactor system. The maximum amount of carbon (491 g/g of catalyst) formation was achieved on 25% Ni, 3% Cu supported catalyst without formation of CO/CO2. Pure carbon nanotubes with length of 308 nm having balloon and horn type shapes were also formed at 673 K. Three sets of catalysts were prepared by varying the concentration of Ni in the first set, Cu concentration in the second set and doping with K in the third set to investigate the effect on stabilization of the catalyst and production of carbon nanotubes and hydrogen by copper and potassium doping. Particle size analysis revealed that most of the catalyst particles are in the range of 20-35 nm. All the catalysts were characterized using powder XRD, SEM/EDX, TPR, CHN, BET and CO-chemisorption. These studies indicate that surface geometry is modified electronically with the formation of different Ni, Cu and K phases, consequently, increasing the surface reactivity of the catalyst and in turn the Carbon nanotubes/H2 production. The addition of Cu and K enhances the catalyst dispersion with the increase in Ni loadings and maximum dispersion is achieved on 25% Ni: 3% Cu/Al catalyst. Clearly, the effect of particle size coupled with specific surface geometry on the production of hydrogen gas and carbon nanotubes prevails. Addition of K increases the catalyst stability with decrease in carbon formation, due to its interaction with Cu and Ni, masking Ni and Ni:Cu active sites.

키워드

참고문헌

  1. Hughes. T. V.; Chamber. C R. 1889. US Patent 405480
  2. Carbon Fibers Filaments Composites; Figueiredo, J. L.; Bernardo, C. A.; Baker, R. T. K., Eds.; Kluwer Academic: Dordrecht/Norwell, MA, 1990
  3. Ishihara, T.;Miyashita, H.;Iseda, H.;Takita, Y. Chem. Lett. 1995, 93, 11
  4. Otsuka, K.; Kobayashi, S.;Takenaka, S. Appl. Catal. A 2000, 190, 261 https://doi.org/10.1016/S0926-860X(99)00324-5
  5. Shiakhutdinov, S. K.;Avdeeva, L. B.;Goncharova, O.V.; Kochubey, D. I.;Novgorodov, B. N.;Plyasova, L. M. Appl. Catal. A 1995, 126, 125 https://doi.org/10.1016/0926-860X(94)00289-4
  6. Ermakova, M. A.;Ermakov, D. Yu.; Kuvshinov, G. G.; Plyasova, L. M. J. Catal. 1999, 187, 77 https://doi.org/10.1006/jcat.1999.2562
  7. Takenaka, S.; Ogihara, H.; Yamanaka, I.; Otuska, K. Appl. Catal. A 2001, 217, 101 https://doi.org/10.1016/S0926-860X(01)00593-2
  8. Avdeeva, L. B.;Goncharova, O. V.; Kochubey, D. I.; Zaikovskii, V. I.; Plyasova, L. N.; Novgorodov, B. N.;Shaikhutdinov, Sh. K. Appl. Catla. A 1996, 141, 117 https://doi.org/10.1016/0926-860X(96)00026-9
  9. Shaikhutdinov, Sh. K.; Avdeeva, L. B.; Novgorodov, B. N.; Zaikovskii, V. I.; Kochubey, D. I. Catal. Lett. 1997, 47, 35 https://doi.org/10.1023/A:1019003609909
  10. Ermakova, M. A.;Ermakov, D. Yu; Kushinov, G. C.;Plyasova, L. M. J. Catal. 1999, 187, 77 https://doi.org/10.1006/jcat.1999.2562
  11. Reshetenko, T. V.; Avdeeva, L. B.; Ismagilov, Z. R.; Chuvilin, A. L.;Ushakov, V. A. Appl. Catal. A 2003, 247, 51 https://doi.org/10.1016/S0926-860X(03)00080-2
  12. Takenaka, S.; Kobayashi, S.; Ogihara, H.; Ostuka, K. J. Catal. 2003, 217, 79
  13. Li, J.; Lu, G.; Li, K.; Wang, W. J. Mol. Catal. A-Chem. 2004, 221, 105 https://doi.org/10.1016/j.molcata.2004.06.015
  14. De Jong, K. P.; Gues, J. W. Catal. Rev. Sci. Eng. 2000, 42, 481 https://doi.org/10.1081/CR-100101954
  15. Chambers, A.; Nemes, T.; Rodriguez, N. M.; Baker, R. T. K. J. Phys. Chem. B 1998, 102, 2251 https://doi.org/10.1021/jp973462g
  16. De Jong, K. P.; Geus, J. W. Catal. Rev. Sci. Eng. 2000, 42, 481 https://doi.org/10.1081/CR-100101954
  17. Otsuka, K.; Ogihara, H.; Takenaka, S. Carbon 2003, 41, 223 https://doi.org/10.1016/S0008-6223(02)00308-1
  18. Reshetenko, T. V.; Avdeeva, L. B.; Ismagilov, Z. R.; Chuvilin, A. L.; Fenelonov, V. B. Catal. Today 2005, 102-103, 115
  19. Corrie, L. C.; Jennifer, S.; Kenneth, J. K. Langumir 2002, 18, 1352 https://doi.org/10.1021/la010701p
  20. Wang, C.; Gau, G.; Gau, S.; Tang, C.; Bi, J. Catal. Lett. 2005, 101, 241 https://doi.org/10.1007/s10562-005-4899-x
  21. Liang, J.; Li, Y. Chem. Lett. 2003, 32, 1126 https://doi.org/10.1246/cl.2003.1126
  22. Liang, Z.; Zhu, Y.; Hu, X. J. Phys. Chem. B 2004, 108, 3488 https://doi.org/10.1021/jp037513n
  23. Balandin, A. A. In Advances in Catalysis; Eley, D. D.; Frankenburg, W. G.; Komarewsky, V. I.; Weisz, P. B., Eds.; Academic Press: Orlando, FL, 1958; Vol. 10, p. 96
  24. Kobozev, N. I. Acta Physicochim 1938, 9, 805
  25. Dowden, D. A. J. Chem. Soc. London 1950, 242
  26. Simon, D.; Bigot, E. Surf. Sci. 1994, 306, 459 https://doi.org/10.1016/0039-6028(94)90086-8
  27. Lang, N. D.; Holloway, S.; Norskov, J. K. Surf. Sci. 1987, 236, 403
  28. Bengaard, H. S.; Alstrup, Ib.; Chorkendorff, Ib.; Ullmann, S.; Rostrup-Nielsen, J. R.; Norskov, J. K. J. Catal. 1999, 187, 238
  29. Ceyer, S. T.;Yang, Q. Y.; Leem, M. B.; Beckelerie, J. D.; Johnson, A. D. Stud. Surf. Sci. Catal. 1987, 36, 51
  30. Rostrup-Nielsen, J. R. J. Catal. 1987, 33, 173
  31. Rostrup-Nielsen, J. R. J. Catal. 1974, 31, 184
  32. Rostrup-Nielsen, J. R.; Christiansen, L. Appl. Catal. A: Gen. 1995, 126, 381
  33. Rostrup-Nielsen, J. R.; Bak Hansen, J. H.; Aparicio, L. M. J. Jpn. Petrol. Inst. 1997, 40, 366
  34. Zhao, N. Q.; He, C. N.; Ding, J.; Zou, T. C.; Qiao, Z. J.; Shi, C. S.; Du, X. W.; Li, J. J.; Li, Y. D. J. Alloy. Compd. 2007, 428, 79 https://doi.org/10.1016/j.jallcom.2006.03.067
  35. Chai, S.; Zein, S. H. S.; Mohamed, A. R. Chem. Phys. Lett. 2006, 426, 345
  36. Inoue, M.; Asai, K.; Nagayasu, Y.; Takane, K.; Yagasaki, E. Adv. Sci. Tech. 2006, 48, 67 https://doi.org/10.4028/www.scientific.net/AST.48.67
  37. Suelves, I.;Lazaro, M. J.; Moliner, R.; Echegoyen, Y.; Palacios, J. M. Catal. Today 2006, 116, 271 https://doi.org/10.1016/j.cattod.2006.05.071
  38. Rahman, M. S.; Croiset, E.; Hudgins, R. R. Topics in Catalysis 2006, 37, 137 https://doi.org/10.1007/s11244-006-0015-8
  39. Cullity, B. D. Elements of X- ray Diffraction, 2nd ed.; Addison-Wesley: Menlo Park, CA, 1978
  40. Robertson, S. D.; Menicol, B. D.; De Bass, J. H.; Kloet, S. C.; Jenkins, J. W. J. Catal. 1975, 37, 424 https://doi.org/10.1016/0021-9517(75)90179-7
  41. Rostrup-Nielson, J. R. In Steam Reforming Catalysts: An Investigation of Catalyst for Turbular Steam Rreforming of Hydrocarbons; Teknisk Forlag A/S: Copenhagen, 1975
  42. Toebes, M. L.; Bitter, J. H.; Van Dillen, A. J.; De Jong, K. P. Catal. Today 2002, 76, 33 https://doi.org/10.1016/S0920-5861(02)00209-2
  43. Hernadi, K.; Konya, Z.; Siska, A.; Kiss, J.; Oszko, A.; Nagy, J. B.; Kirivsi, I. Mater. Chem. Phys. 2003, 77, 536 https://doi.org/10.1016/S0254-0584(02)00105-0
  44. Park, C.; Keane, M. A. J. Catal. 2004, 221, 386 https://doi.org/10.1016/j.jcat.2003.08.014
  45. Ermakova, D. Yu.; Ermakov, G. G.; Plyasova, L. M. J. Catal. 1999, 187, 77 https://doi.org/10.1006/jcat.1999.2562
  46. De Chen; Christensen, K. O.; Fernandez, E. O.; Yu, Z.; Totdal, B.; Latorre, N.; Monzon, A.; Holmen, A. J. Catal. 2005, 229, 82 https://doi.org/10.1016/j.jcat.2004.10.017