DOI QR코드

DOI QR Code

Synthesis and Evaluation of F-18 Labeled 2'-Deoxy-2'-fluoro-5-methyl-1-β-L-arabinofuranosyluracil (L-[18F]FMAU)

  • Jo, Nam-Hyun (Biomaterial Chemistry Research Center, Korea Institute of Science and Technology) ;
  • Moon, Byung-Seok (Laboratory of Radiopharmaceuticals, Korea Institute of Radiological and Medical Sciences) ;
  • Hong, Su-Hee (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences) ;
  • An, Gwang-Il (Laboratory of Radiopharmaceuticals, Korea Institute of Radiological and Medical Sciences) ;
  • Choi, Tae-Hyun (Laboratory of Nuclear Medicine, Korea Institute of Radiological and Medical Sciences) ;
  • Cheon, Gi-Jeong (Laboratory of Radiopharmaceuticals, Korea Institute of Radiological and Medical Sciences) ;
  • Cho, Jung-Hyuck (Biomaterial Chemistry Research Center, Korea Institute of Science and Technology) ;
  • Yoo, Kyung-Ho (Biomaterial Chemistry Research Center, Korea Institute of Science and Technology) ;
  • Lee, Kyo-Chul (Laboratory of Radiopharmaceuticals, Korea Institute of Radiological and Medical Sciences) ;
  • Oh, Chang-Hyun (Biomaterial Chemistry Research Center, Korea Institute of Science and Technology)
  • Published : 2007.12.20

Abstract

L-[18F]FMAU ([18F]1b) was prepared from the precursor 2-O-[(trifluoromethyl)-sulfonyl]-1,3,5-tri-Obenzoyl- α-L-ribofuranose, by coupling the radioactive fluoro-sugar with the corresponding silylated thymine in 4 steps. The final products, including the α and β anomers, were purified using reverse phase HPLC with an appropriate solvent (5% CH3CN/H2O) at a flow rate of 3.0 mL/min. The total elapsed time of synthesis was about 180-200 min from EOB. The α/β anomeric ratio of the compounds was about 1:9, and the radiochemical purity of the product (β-form) was >98% with decay-corrected yields of 25-35%. All radioactive samples were confirmed using co-injection with pure non-radioactive analogues in every step. In the cellular uptake in vitro test of herpes simplex virus-thymidine kinase (HSV1-TK) gene expressed cells, the percent uptake of injected dose (%ID) of L- and D-FMAU was 37.28 and 65.86, respectively after 240 min incubation. However, the relative uptake (MCA-TK/MCA cellular uptake ratio) of L-FMAU was higher than that of D-FMAU (%ID of L-FMAU, 0.36 and D-FMAU, 0.93 after 240 min incubation in MCA cells). This means that L-FMAU will show better specific HSV1-TK gene expressed cell uptake for selective HSV1-TK gene imaging.

Keywords

References

  1. Horn, D. M.; Neeb, L. A.; Colacino, J. M.; Richardson, F. C. Antiviral Res. 1997, 34, 71-74 https://doi.org/10.1016/S0166-3542(96)01027-3
  2. Colacino, J. M. Antiviral Res. 1996, 29, 125-139 https://doi.org/10.1016/0166-3542(95)00836-5
  3. Alauddin, M. M.; Conti, P. S.; Fissekis, J. D. J. Label. Compd. Radiopharm. 2002, 45, 583-590 https://doi.org/10.1002/jlcr.549
  4. Alauddin, M. M.; Ghosh, P.; Gelovani, J. G. J. Label. Compd. Radiopharm. 2006, 49, 1079-1088 https://doi.org/10.1002/jlcr.1127
  5. Samuelsson, L.; Langstrom, B. J. Label. Compd. Radiopharm. 2003, 46, 263-272 https://doi.org/10.1002/jlcr.668
  6. Conti, P. S.; Alauddin, M. M.; Fissekis, J. D.; Watanabe, K. A. Nucl. Med. Biol. 1995, 22, 783-789 https://doi.org/10.1016/0969-8051(95)00017-R
  7. Sun, H.; Sloan, A.; Mangner, T. J.; Vaishampayan, U.; Muzik, O.; Collins, J. M.; Douglas, K.; Shields, A. F. Eur. J. Nucl. Med. Mol. Imaging 2005, 32, 15-22 https://doi.org/10.1007/s00259-004-1713-8
  8. Choi, S. R.; Zhuang, Z. P.; Chacko, A. M.; Acton, P. D.; Tjuvajev- Gelovani, J.; Doubrovin, M.; Chu, D. C. K.; Kung, H. F. Acad. Radiol. 2005, 12, 798-805 https://doi.org/10.1016/j.acra.2005.04.010
  9. Gumina, G.; Chong, Y.; Choo, H.; Song, G. Y.; Chu, C. K. Curr. Top. Med. Chem. 2002, 2, 1065-1086 https://doi.org/10.2174/1568026023393138
  10. Reichman, U.; Watanabe, K. A.; Fox, J. J. Carbohydrate Res. 1975, 42, 233-240 https://doi.org/10.1016/S0008-6215(00)84265-2
  11. Pankiewicz, K. W.; Nawrot, B.; Gadler, H.; Price, R. W.; Watanabe, K. A. J. Med. Chem. 1987, 30, 2314-2316 https://doi.org/10.1021/jm00395a023
  12. Tann, C. H.; Brodfuehrer, P. R.; Brundidge, S. P.; Sapino, C.; Howell, H. G. J. Org. Chem. 1985, 50, 3644-3647 https://doi.org/10.1021/jo00219a048
  13. Pillarsetty, N.; Shangde, C.; Ageyeva, L.; Finn, R. D.; Blasberg, R. G. J. Med. Chem. 2006, 49, 5377-5381 https://doi.org/10.1021/jm0512847
  14. Du, J.; Choi, Y.; Lee, K.; Chun, B. K.; Hong, J. H.; Chu, C. K. Nucleosides Nucleotides 1999, 18, 187-195 https://doi.org/10.1080/15257779908043066
  15. Chou, T. S.; Becke, L. M.; O'Toole, J. C.; Carr, M. A.; Parker, B. E. Tetrahedron Lett. 1996, 37, 17-20 https://doi.org/10.1016/0040-4039(95)02102-7

Cited by

  1. Microreactors for radiopharmaceutical synthesis vol.9, pp.10, 2009, https://doi.org/10.1039/b820299k
  2. Comparison of D-[18F]FMAU and L-[18F]FMAU as PET Imaging Agents for HSV1-TK Gene Expression vol.31, pp.11, 2007, https://doi.org/10.5012/bkcs.2010.31.11.3309
  3. Radiosynthesis and in vitro evaluation of 1‐(tetrahydro‐5‐hydroxy‐6‐(hydroxymethyl)‐2H‐pyran‐3‐yl)‐5‐[125I]iodouracil: A ne vol.54, pp.2, 2007, https://doi.org/10.1002/jlcr.1819