DOI QR코드

DOI QR Code

Formation and Annealing Effect of Tolanethioacetate Self-Assembled Monolayers on Au(111)

  • Jeong, Young-Do (Department of Chemistry, Hanyang University) ;
  • Han, Jin-Wook (Department of Chemistry, Hanyang University) ;
  • Kim, Nak-Joong (Department of Chemistry, Hanyang University) ;
  • Lee, Young-Il (Department of Chemistry, Ulsan University) ;
  • Lee, Chang-Jin (Advanced Material Division, Korea Research Institute of Chemical Technology) ;
  • Hara, Masahiko (Emergent Functions Asian Collaboration Laboratory, Frontier Research System, RIKEN) ;
  • Noh, Jaeg-Eun (Department of Chemistry, Hanyang University)
  • Published : 2007.12.20

Abstract

Self-assembled monolayers (SAMs) were formed by adsorption of thioacetyl-terminated tolanethioacetate (TTA) on Au(111) in a 0.5-mM ethanol solution after one day immersion at room temperature. Molecular-scale STM imaging revealed that the TTA SAMs were composed of two mixed phases; an ordered phase with small domains describing a ( × 2 )R30° structure and a disordered phase. Interestingly, after annealing the precovered TTA SAMs on Au(111) at 90 °C for 1 h, the small ordered domains grew unidirectionally, resulting in the formation of unique rod-like domains, which were assigned a ( × 2 )R7° structure. These results will be very useful in understanding the formation and thermal behavior of TTA SAMs on gold surfaces.

Keywords

References

  1. Love, J. C.; Estroff, L. A.; Kriebel, J. K.; Nuzo, R. G.; Whitesides, G. M. Chem. Rev. 2005, 105, 1103 https://doi.org/10.1021/cr0300789
  2. Noh, J.; Jeong, Y.; Ito, E.; Hara, M. J. Phys. Chem. C 2007, 111, 2691 https://doi.org/10.1021/jp067093c
  3. Noh, J.; Kato, H. S.; Kawai, M.; Hara, M. J. Phys. Chem. B 2006, 110, 2793 https://doi.org/10.1021/jp055538b
  4. Noh, J.; Park, H.; Jeong, Y.; Kwon, S. Bull. Korean Chem. Soc. 2006, 27, 403 https://doi.org/10.5012/bkcs.2006.27.3.403
  5. Noh, J. Bull. Korean Chem. Soc. 2006, 27, 944 https://doi.org/10.5012/bkcs.2006.27.6.944
  6. Tour, J. M. Acc. Chem. Res. 2000, 33, 791 https://doi.org/10.1021/ar0000612
  7. Smalley, J. F.; Sachs, S. B.; Chidsey, C. E. D.; Dudek, S. P.; Sikes, H. D.; Creager, S. E.; Yu, C. J.; Feldberg, S. W.; Newton, M. D. J. Am. Soc. Chem. 2004, 126, 14620 https://doi.org/10.1021/ja047458b
  8. Flood, A. H.; Stoddart, J. F.; Steuerman, D. W.; Heath, J. R. Science 2004, 306, 2055 https://doi.org/10.1126/science.1106195
  9. Kagan, C. R.; Afzali, A.; Martek, R.; Gignac, L. M.; Solomon, P. M.; Schrott, A. G.; Ek, B. Nano Lett. 2003, 3, 119 https://doi.org/10.1021/nl0259075
  10. Chen, J.; Reed, M. A. Chem. Phys. 2002, 281, 127 https://doi.org/10.1016/S0301-0104(02)00616-X
  11. Cai, L.; Yao, Y.; Yang, J.; Price, D. W.; Tour, J. M. Chem. Mater. 2002, 14, 2905 https://doi.org/10.1021/cm011509b
  12. Stapleton, J. J.; Harder, P.; Daniel, T. A.; Reinard, M. D.; Yao, Y.; Price, D. W.; Tour, J. M.; Allara, D. L. Langmuir 2003, 19, 8245 https://doi.org/10.1021/la035172z
  13. Tour, J. M.; Jones II, L.; Pearson, D. L.; Lamba, J. J. S.; Burgin, T. P.; Whitesides, G. M.; Allara, D. L.; Parikh, A. N.; Atre, S. V. J. Am. Chem. Soc. 1995, 117, 9529 https://doi.org/10.1021/ja00142a021
  14. Kang, Y.; Won, D.; Kim, S. R.; Seo, K.; Choi, H.-S.; Lee, G.; Noh, Z.; Lee, T. S.; Lee, C. Mater. Sci. Eng. C 2004, 24, 43 https://doi.org/10.1016/j.msec.2003.09.042
  15. Jeong, Y.; Lee, C.; Ito, E.; Hara, M.; Noh, J. Jpn. J. Appl. Phys. 2006, 45, 5906 https://doi.org/10.1143/JJAP.45.5906
  16. Bucher, J.-P.; Santesson, L.; Kern, K. Langmuir 1994, 10, 979
  17. Sondag-Huethorst, J. A. M.; Schonenberger, C.; Fokkink, L. G. J. J. Phys. Chem. 1994, 98, 6826
  18. Schonenberger, C.; Sondag-Huethorst, J. A. M.; Jorritsma, J.; Fokkink, L. G. J. Langmuir 1994, 10, 611
  19. Yamada, R.; Wano, H.; Uosaki, K. Langmuir 2000, 16, 5223
  20. Huang, S. H.; Tour, J. M. J. Org. Chem. 1999, 64, 8898 https://doi.org/10.1021/jo991201s
  21. Noh, J.; Murase, T.; Nakajima, K.; Lee, H.; Hara, M. J. Phys. Chem. B 2000, 110, 7411
  22. Yang, G.; Liu, G.-y. J. Phys. Chem. B 2003, 107, 8746 https://doi.org/10.1021/jp0219810
  23. Chambliss, D. D.; Willson, R. J.; Chiang, S. Phys. Rev. Lett. 1991, 66, 1761 https://doi.org/10.1103/PhysRevLett.66.1761
  24. Chambliss, D. D.; Willson, R. J. J. Vac. Sci. Technol. B 1991, 9, 933 https://doi.org/10.1116/1.585498

Cited by

  1. Tripodal Osmium Polypyridyl Complexes for Self-Assembly on Platinum Nanoparticles vol.2, pp.12, 2011, https://doi.org/10.1021/jz200558g
  2. Light-induced reversible modification of the work function of a new perfluorinated biphenyl azobenzene chemisorbed on Au (111) vol.6, pp.15, 2014, https://doi.org/10.1039/C4NR01880J
  3. Unexpected Formation of Dense Phases along with Temperature-Induced, Self-Assembled Terphenylthiolate Monolayers on Au(111) vol.120, pp.31, 2016, https://doi.org/10.1021/acs.jpcc.6b02357
  4. Physical Chemistry Research Articles Published in the Bulletin of the Korean Chemical Society: 2003-2007 vol.29, pp.2, 2008, https://doi.org/10.5012/bkcs.2008.29.2.450
  5. Effect of Solution Temperature on the Structure of Thioacetyl-terminated Tolane Self-assembled Monolayers on Au(111) vol.29, pp.6, 2007, https://doi.org/10.5012/bkcs.2008.29.6.1105
  6. Self-Assembled Monolayers of Dioctyl Diselenides on Au(111) vol.29, pp.6, 2007, https://doi.org/10.5012/bkcs.2008.29.6.1229
  7. pH-Dependent Stability of Self-Assembled Monolayers on Gold vol.29, pp.9, 2008, https://doi.org/10.5012/bkcs.2008.29.9.1843
  8. Formation and Structure of Self-Assembled Monolayers of Octylthioacetates on Au(111) in Catalytic Tetrabutylammonium Cyanide Solution vol.30, pp.2, 2007, https://doi.org/10.5012/bkcs.2009.30.2.441