Permuting Tri-Derivations in Prime and Semi-Prime Gamma Rings

  • Ozden, Duran (Department of Mathematics, Faculty of Art and Sciences, Cumhuriyet University) ;
  • Ozturk, Mehmet Ali (Department of Mathematics, Faculty of Art and Sciences, Cumhuriyet University) ;
  • Jun, Young Bae (Department of Mathematics Education (and RINS), Gyeongsang National University)
  • 투고 : 2004.02.19
  • 발행 : 2006.06.23

초록

We study permuting tri-derivations in ${\Gamma}$-rings and give an example.

키워드

참고문헌

  1. W. E. Barnes, On the ${\Gamma}$-rings of Nobusawa, Pacic J. Math., 18(3)(1966), 411-422. https://doi.org/10.2140/pjm.1966.18.411
  2. S. Kyuno, On prime gamma rings, Pacic J. Math., 75(1)(1978), 185-190. https://doi.org/10.2140/pjm.1978.75.185
  3. N. Nobusawa, On a generalization of the ring theory, Osaka J. Math., 1 (1964), 81-89.
  4. M. A. Ozturk and M. Sapanci, Orthogonal symmetric bi-derivation on semi-prime gamma rings, Hacettepe Bul. of Sci. and Engineering, Series B, 26(1997), 31-46.
  5. M. A. Ozturk, M. Sapanci and Y. B. Jun, Symetric bi-derivation on prime rings, East Asian Math. J., 15(1)(1999), 105-109.
  6. M. A. Ozturk and M. Sapanci, On generalized symetric bi-derivations in prime rings, East Asian Math. J., 15(2)(1999), 165-176.
  7. M. A. Ozturk, Permuting tri-derivations in prime and semi-prime rings, East Asian Math. J., 15(2)(1999), 177-190.
  8. M. A. Ozturk, M. Sapanci, M. Soyturk and K. H. Kim, Symmetric bi-derivation on prime gamma rings, Sci. Math., 3(2)(2000), 273-281.
  9. M. A. Ozturk, Y. B. Jun and K. H. Kim, Orthogonal traces on semi-prime gamma rings, Sci. Math. Jpn., 53(3)(2001), 491-501; e4, 432-429.
  10. M. Soyturk, Some generalizations in prime ring with derivation, Ph. D. Thesis, Cum. Univ. Graduate School of Natural and Applied Scien. Dept. Math. (1994).
  11. M. Soyturk, The commutative in prime gamma rings with derivations, Turkish J. Math., 18(1994), 149-155.