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ABsTRACT. We study permuting tri-derivations in I'-rings and give an example.

1. Introduction

The notion of a I'-ring, a concept more general than a ring, was defined by
Nobusawa [3]. Barnes [1] weakened slightly the conditions in the definition of I'-
ring in the sense of Nobusawa. Barnes [1], Kyuno [2] and Oztiirk et al. ([4]-[9])
studied the structure of I'-rings and obtained various generalizations analogous to
corresponding parts in ring theory. In [7], Oztiirk proved some results related with
permuting tri-derivation on prime and semi-prime rings. As a continuation of [7],
we study permuting tri-derivations on I'-rings and give an example.

2. Preliminaries

We first recall some basic concepts for the sake of completeness. Let M and
I' be additive abelian groups. M is called a I'-ring if the following conditions are
satisfied: for any a,b,c € M and o, 5 €T,

e aabe M
e (a+b)ac = aac+ bac, a(la+ B)b = aab + afb, aa(b+ ¢) = aad + aac
e (aab)fc = aa(bfc).

Every ring is a I'-ring and many notions on the ring theory are generalized to I'-
rings. Let M be a I'-ring. A I'-subring of M is an additive subgroup N such that
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NT'N C N. A right (resp. left) ideal of M is an additive abelian group I such that
ITM C I (resp. MT'I C I). If I is both a right and left ideal, then we say that I is
an ideal. M is called a prime I'-ring if s’ MTb =0 imply a =0o0r b =0 (a,b € M).
Semi-prime T-ring is defined similarly. A map D(-,-) : M x M — M is said to
be symmetric bi-additive if it is additive both argument and D(z,y) = D(y,x) for
all z,y € M. Then the map d : M — M defined by d(z) = D(z,z) is called
the trace of D. A symmetric bi-additive map is called a symmetric bi-derivation if
D(zay,z) = D(z,z)ay + zaD(y, z) for all x,y € M and o € T".

Definition 2.1. Let M be a I'-ring. For a subset I of M,
Annyl = {a € M | o'l =0}

is called the left annihilator of I. A right annihilator Ann,.I can be defined similarly.
We shall need the following well-known and frequently used lemmas:

Lemma 2.2 [10, Lemma 3.4.5]. Let M be a semi-prime I'-ring and I a non-zero
ideal of M. Then Ann,I = AnnI.

Let M be a semi-prime I'-ring and I a non-zero ideal of M. Then we will denote
Annl = Ann,I = Ann;I.

Lemma 2.3 [10, Lemma 3.4.6]. Let M be a semi-prime I'-ring and I a non-zero
ideal of M. Then

(i) Annl is an ideal of M.
(ii) IN Annl = 0.
Lemma 2.4 [8, Lemma 3]|. Let M be a 2-torsion free semi-prime I'-ring, I a
non-zero ideal of M and a,b € M. Then the following are equivalent:
(i) acxpb=0 for allz € I and o, €T
(ii) bazfa=0 forallz €I and o, €T
(iil) aazfBb+ baxfBa =0 for allz €I and o, € T.

If one of the conditions is fulfilled and AnniI = 0 then aab = 0 = baa for all a € T.
Moreover if M is a prime U'-ring then a =0 or b= 0.

Lemma 2.5 [11, Lemma 3(ii)]. Let M be a prime I'-ring, I a non-zero ideal of
M, and a € R. If al'd(I) = 0 (d(I)T'a = 0), thena = 0 or d = 0, where d is a
derivation of M.

3. The results

Let M be a I'-ring. A mapping D(-,-,-) : M x M x M — M is said to be
tri-additive if it satisfies:
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b D(:Eer,y,z) = D(a:,y,z)JrD(w,y,z),
e D(z,y+w,z2)=D(z,y,z) + D(z,w,z2),
e D(z,y,2+w) = D(z,y,2) + D(z,y,w)

for all z,y,z,w € M. A tri-additive mapping D(-,-,) is said to be permuting tri-
additive it D(z,y,2) = D(x,z,y) = D(y,z,2) = D(y, z,z) = D(z,z,y) = D(z,y,x)
for all z,y,z € M. A mapping d : M — M defined by d(z) = D(z,z,x) is
called the trace of D(-,-,-), where D(-,-,-) is a permuting tri-additive mapping. It
is obvious that if D(-,-,-) is a permuting tri-additive mapping, then the trace of
D(,-,-) satisfies the relation

(1) dxz +y) =d(z) +d(y) + 3D(z,z,y) + 3D(z,y,y)

for all x,y € M. A permuting tri-additive mapping D(-,-,-) is called a permuting
tri-derivation if D(zaw,y,z) = D(x,y,z)aw + zaD(w,y, z) for all z,y,z,w € M
and a € I'. Then the relations

and
D(z,y, zaw) = D(x,y, z)aw + zaD(w, y, )

are fulfilled for all z,y, z,w € M and a € T'. Let D(-,-,-) be a permuting tri-additive
mapping of M where M is a I'-ring. Since

D(0,z,y) = D(0+0,z,y) = D(0,z,y) + D(0, z,y),
we have D(0,z,y) =0 for all z,y € M. Thus
OZD(Ovyaz) :D(—JI—Fl‘,y,Z) :D(—Z‘,y72’)+D(Z‘,y,Z)7

and so D(—z,y,2) = —D(z,y,2) for all z,y,z € M. Therefore the mapping d :
M — M defined by d(z) = D(z,,x) is an odd function.

Example 3.1. For a commutative ring R, let

a b ¢ 0 0 «
M = 0 0 0 a,b,ce R, and I' = 0 0 O a€R
0 0 O 0 0 O

It is obvious that M and I" are both abelian groups under matrix addition. Now it
is easy to show that M is a I'-ring under matrix multiplication. A map D(-,-,") :
M x M x M — M defined by

a b o az by ¢ a3 by c3
0O 0 O , 0O 0 O , 0O 0 O —
0O 0 O 0 O 0O 0 O
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is a permuting tri-derivation.

Lemma 3.2. Let M be a semi-prime I'-ring of characteristic not 2, and 3, 5-
torsion free, I a non-zero ideal of M. Let D1(-,-,-) and Ds(-,-,-) be permuting
tri-derivations of M with the traces di and do respectively. Then

(i) If di(I)TITds(I) = O then dy (M)TITds(M) = 0.
(i) If AnnyI =0 and dy(M)TITdy(M) = 0 then dy(M)TMTds(M) = 0.

Proof. (i). Suppose for all z,y,z € [ and a, B €T

(2) di(z)azfdz(z) = 0.
Linearizing (2) implies that
(3) 0 = di(x+y)azfda(z+y)

= di(z)azfBds(z) + di(x)azBda(y) + 3di(z)zBDs (2, z,y)
+ 3d1(x)azBDa(z,y, y) + di(y)ozBda(z) + di(y)zBda(y)
+ 3d1(y)azBD2(z, 2, y) + 3d1(y)azBDa(z, y,y)
+ 3D1(x, z,y)azfda(x) + 3D1(x, z,y)azBda(y)
+9D1 (2, z,y)azBDsz(z, z,y) + 9D1(z, 2, y)azBDa(z, y, y)
+3D1(z, y, y)ozBdz(x) + 3D1 (2, y, y)azBd2(y)
+9D1(z,y,y)ezBDs(x, z,y) + 9D1 (2, y, y)azBDs(x,y, y)

and by using (2), we have for all z,y,z € [ and o, €T

(4) dy(z)azBda(y) + 3di(x)azBDa(x, x,y) + 3di(x)azBDs(x, x,y)
+ di(y)azBda(x) + 3d1 (y)azBD2(x, 2, y) + 3d1(y)azBD2(z, y,y)
+3D1(x, z,y)azfBds(x) + 3D (x, x, y)azBda(y)
+ 9D (z,z,y)azBDs(x, x,y) + 9D1(x, 2, y)azBDa(x, y, y)
+3D1(z,y, y)ozBdz(x) + 3D1 (2, y, y)azfda(y)
+9D1(z, y, y)ezBD2 (2, x, y) + 9D1 (2, y, y)zBDa (2, y, y)
=0.
Replacing « by —z in (4) induces that

(5) —dy(z)azfda(y) — 3di(x)azfDe(x, x,y) + 3di(x)azBD2(x,y,y)
— di(y)azfda(x) + 3d1(y)azBD2(x, 2, y) — 3di(y)ezBD2(2,y,y)
—3D1(z, z,y)azfda(x) + 3D1 (x, x, y)az0da (y)
+9D; (2, x,y)azBDy(x, x,y) — 9ID1 (2, x,y)azBDs(z,y, y)
+3D1 (2, y, y)azfdy(x) — 3D1(z,y, y)azfdz(y)
— 9D (z,y, y)azBDs(x, ,y) + 9D1 (2, y,y)azBDa(z,y,y)

=0
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for all z,y,z € I and o, 3 € I'. Since CharM # 2 and M is 3-torsion free, it follows
from (4) and (5) that

(6) di(z)azBDa(z,y,y) + di(y)azBD2(z, 2, y) + Di(x, z, y)azBd2(y)
+3D1(z, 2, y)azfDa(x, x,y) + Di(z, y,y)azfdz(x)
+ 3D1(x7yay)azﬁD2(x7yay) =0

for all z,y,z € I and o, € I'. Writing 2y for y in (6) and using the fact that
CharM # 2, we get

(7) dl(y)azﬁDQ(xazvy) + Dl(llf,l'7y)0126d2(y)
+ 3D1(537y’y)0425D2(957yay) =0

for all z,y,z € I and o, B € I'. Writing z +y for « in (7) and using (2) and the fact
that M is 5-torsion free, we have

(8) di(y)azBDs(z,y,y) + Di(x,y,y)azfdz(y) =0

for all z,y,z € I and o, € . Replacing z by z8da(y)a’mB' D1 (z,y,y)az in (8),
we get

9) D1 (2, y,y)azBdz(y)a'mB' Dy (x, y, y)ozfda(y)
= —di(y)azfdz(y)oa'mB' Dy (x,y, y)azBDs(x,y,y)

for all z,y,z € I,m € M and o, 3,0/, 5" € T and from (2), we get
Di(2,y, y)azBda(y)a'mpB' D1 (z,y, y)azBda(y) = 0

for all z,y,z € I, m € M and «,3,a’,3" € T'. Since M is a semi-prime I'-ring, we
get

(10) Dl(l'vyvy)azﬂdQ(y) =0

for all z,y,z € I and o, 8 € I'. Now writing m~yz by z in (10), where m € M,~ € T,
we get

(11) Dy (z,y,y)amyzBda(y) =0

for all z,y,z € I, m € M and «, (3,7 € I". Next replacing = by zym in (10) and
using (11), we have

(12) J'VYDI (maya y)OéZﬂdg(y) =0
for all x,y,z € I, me M and «a, 3,7 € I', which implies that

Di(m,y,y)azBda(y) € Ann,. I and also Di(m,y,y)azBds(y) € I,
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and so Di(m,y,y)azfdz(y) € (Annl) NI = 0 by Lemmas 2.2 and 2.3. Thus, for
ally,z€lI,me M and o, €T

(13) Dl (m7 Y, y)OéZﬁdQ (y) =0
Now replacing y by  +y in (13), we get

(14) Dy (m,x, z)azfds(y) + 3D1(m, z, x)azBDs(z, z,y)
+ 3D1(m7 Z, I)OLZﬂDQ(l’, Y, y) + Dl(ma Y, y)OLZﬂdQ(fE)
+ 2D (m, z,y)azfBda(x) + 2D1(m, z, y)azBda(y)
+ 6-Dl (ma z, y)OéZﬁDZ(xa z, y) + 6D1(m7 z, y)a25D2($7 Y, y)
=0
for all z,y,z € I, m € M and o, 8 € I'. Writing —z for z in (14) and using the fact
that CharM # 2, we get
(15) Dy(m, z, z)azfdy(y) + 3D1(m, z, x)azBDs(x, x,y)
+ 3D1 (m7 Y, y)O[ZﬁD2<$, x, y) + 2Dl <m7 x, y)azﬁdz(x)
+ 6D1(m7 z, y)azﬂDg(am Y, y) =0
for all z,y,z € I, m € M and a, 3 € I'. Now replacing y by = +y in (15) and using
(13) the fact that M is 3-torsion free, we obtain
(16) 6D1(m7 z, Z)OéZﬂDQ(ZE, z, y) + 3D1 (m7 z, ZL’)OZZBDQ(I, Y, y)
+ Di(m, y,y)azfdy(x) + 4D1(m, z,y)azBdy(x)
+ 6D1(m, 2, y)azBDs(x, x,y) =0

for all z,y,z € I, m € M and o, 8 € I'. Writing —x for z in (16) and using the fact
that CharM # 2, we get

(17) 3Dy (m,x, x)azBDs(x, x,y) + 2D1(m, z,y)azBda(x) = 0

for all x,y,z € I, m € M and «, 8 € . Writing z8ds(z)a’m’ 3’ Dy (m, x,y)az for z
in (17) and using (13), we get

(18) 2D (m, z,y)azBda(x)a’m’ 8 Di(m, x,y)azBda(z) = 0

for all z,y,z € I, m,m’ € M and «,8,a/,3 € I'. Since CharM # 2 and M is
semi-prime I'-ring, (18) implies that

(19) Dl(maxay)azﬂdQ(x) =0
for all z,y,z € I, m € M and «, 3 € I". Now writing m~yz by z in (19), we get

(20) Di(m,z,y)amyzBdy(z) =0
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for all x,y,z € I, m € M and «, 3,7 € I'. Next replacing y by yym in (19) and
using (20), we have

(21) yyD1(m,m, x)azfdy(z) = 0
for all z,y,z € I, me M and o, 3,7 € T'. It follows that
Dy (m,m,x)azfda(z) € Ann,I and Dy(m, m,x)azfBds(z) € I.

So we get Dy(m,m,x)azfds(x) € (AnnI) NI = 0 by Lemmas 2.2 and 2.3. Thus,
forall z,z€l,me M and o, €T

(22) Dy(m,m, x)azfBda(z) = 0.
Now replacing = by « + y in (22), we get

(23) Di(m, m,x)azBds(y) + 3D1(m, m, x)azBDs(x, x,y)
+ 3Dy (m, m,x)azBDs(x,y,y) + D1(m, m,y)azBds(x)
+3D1(m, m,y)azBDs(x,z,y) + 3D1(m,m,y)azBDs(z,y,y)
=0

for all z,y,z € I, m € M and o, 8 € I'. Writing —z for = in (23) and using the fact
that M is 3-torsion free, we get

(24) Dy (m, m, z)azBDs(z,y,y) + Di(m, m, y)azfDsy(z,,y) = 0

for all z,y,z € I, m € M and o, € I'. Writing « + y for = in (24) and using (22),
we get

(25) Dl (m7 m, .’I?)OéZBdg(y) + 3D1 (m) m, y)OéZﬁDQ(J?, Y, y) =0

for all z,y,z € I, m € M and «, 8 € T'. Writing z8ds(y)a’m’3' D1 (m, m, x)az for z
in (25) and using (22), we get

(26) D1(m,m, x)azBda(y)a’m' ' Dy (m, m, z)azBdz(y) =0

for all x,y,z € I, mym’ € M and «a,8,d/,3" € T'. Since M is semi-prime I'-ring,
(26) implies that

(27) Di(m,m,z)azfBda(y) =0
forall z,y,z € I, m € M and «, 8 € I'. Now writing m~yz by z in (27), we get
(28) Dy(m,m,x)amyzBds(y) =0

for all z,y,z € I, m € M and «,(,v € I'. Next replacing « by zym in (27) and
using (28), we have

(29) zydi(m)azBda(y) =0
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forall z,y,z € I, m € M and «, 3,7 € I'. It follows that
dy(m)azBda(y) € Ann,.I and dy(m)azBda(y) € 1

so that dy(m)azfda(y) € (AnnI) NI = 0 by Lemmas 2.2 and 2.3. Thus, for all
y,z€l,me M and o, €T

(30) di(m)azfBdz(y) = 0.
Writing z + y for y in (30) and using the fact that M is 3-torsion free, we get
(31) dl(m)azﬁDg(x,z,y) erl(m)ozzﬂDQ(x,y,y) =0

for all z,y,z € I, m € M and «, 8 € I'. Replacing z for —z in (31) and using the
fact that CharM # 2, we get

(32) d1(m)azﬂD2(m,x,y) =0
for all z,y,z € I, m € M and «, 3 € I". Now writing zyn by z in (32), we get
(33) di(m)azynBDs(z,2,y) =0

for all z,y,z € I, m,n € M and «, 3,7 € T'. Next replacing y by nvyy in (32) and
using (33), we have

(34) di(m)azBDy(n,z,z)yy =0
for all x,y,z € I, m,n € M and «, 3,y € I'. It follows that
dy(m)azBDa(n,z,z) € Annyl and di(m)azBDa(n,z,z) € I

so that dy(m)azfBDa(n,x,x) € (Annl) NI = 0 by Lemmas 2.2 and 2.3. Thus, for
all z,z €I, myne M and o, 8 €T,

(35) dy(m)azBDa(n,z,x) = 0.

Writing = + y for « in (35) and using the fact that CharM # 2, we get

(36) dy(m)azfDa(n,z,y) =0

for all z,y,z € I, m,n € M and «, 8 € I'. Now writing zyn by z in (36), we get
(37) dy(m)azynfBDa(n,x,y) =0

for all z,y,z € I, m,n € M and a, (3,7 € I'. Next replacing = by nyz in (36) and
using (37), we have

(38) dl (m)aZﬂDQ (nv n, y)’}/‘r =0
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for all x,y,z € I, m,n € M and «, 3,7 € I'. It follows that
dy(m)azBDa(n,n,y) € AnnI and dy (m)azBDa(n,n,y) € I

so that di(m)azBD2(n,n,y) € (AnnI) NI = 0 by Lemmas 2.2 and 2.3. Thus, for
ally,ze I, mne M and o, €T

(39) di(m)azBDy(n,n,y) = 0.
Replacing z by zyn in (39), we get
(40) di(m)azynBDy(n,n,y) =0

for all y,z € I, myn € M and «, (3,7 € I'. Next replacing y by nyy in (39) and
using (40), we get

(41) di(m)azBda(n)yy =0
forall y,z € I, m,n € M and «, 3,y € I'. It follows that
dy(m)azfda(n) € Annyl and di(m)azfdz(n) € T

so that di(m)azfBds(n) € (Annl) NI = 0 by Lemmas 2.2 and 2.3. Thus, for all
zel, mneMand a,€T

dy(m)azfda(n) = 0.
(ii). Suppose that Ann;l =0 and for all z € I, m,n € M and o, €T,
(42) dy(m)azfda(n) = 0.
Replacing z by m/Bda(n)yzB'n'y'di(m)am’ in (42), we get
di(m)am/Bdy(n)yzB'n'y'di(m)am’Bdz(n) = 0

forall z € I, m,n,m’,n’ € M and o, 3,7, 3,7 € . Since M is a semi-prime I'-ring,
we have

(43) dy (m)am’ Bdy (n)yz = 0

for all z € I, m,n,m' € M and «, 3,7 € T, and so di(m)am’Bds(n) € AnniI = 0.
Thus we conclude that
di(m)am’Bday(n) =0

for all m,n,m’ € M and «, 3 € I. This completes the proof. d

Lemma 3.3. Let M be a 2, 3-torsion free I'-ring and I a non-zero one-sided
ideal of M. Let D(,-,-) be a permuting tri-derivation with the trace d. Consider the
following conditions:
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d(z) =0 forallz €1

)
(il) D(x,y,2z) =0 for all x,y,z € I
(iii) D(m,z,y) =0 for allz,y € I and m € M
(iv) D(m,n,z) =0 forallz € I and mn € M
(v) D(m,n,r) =0 for all m,n,r € M.

Then (i) and (ii) are equivalent. Moreover if M is a prime I'-ring or Ann,I =0
(or AnnyI = 0), the above conditions are equivalent.

Proof. Let I be a right ideal of M and let m,n,r € M, z,y,z € I and «, 3,7 € T
Since M is 3-torsion free, it follows from (1) that

(44) D(z,z,y) + D(z,y,y) = 0.

Writing y + z for y in (44) and using the fact that M is 2-torsion free, we know that
(i) and (ii) are equivalent. Replacing z by zam in (ii) implies that

0 = D(z,y,zam) = D(x,y, z)am + zaD(m, z,y) = zaD(m, x,y).

If M is a prime I'-ring then by Lemma 2.5, the above condition shows that (ii) and
(iii) are equivalent. If Ann,I = 0, then the above condition shows that (ii) and (iii)
are equivalent. Replacing y by y0On in (iii), we have

If M is a prime I'-ring then by Lemma 2.5, the above condition shows that (iii) and
(iv) are equivalent. If Ann,I = 0, then the above condition shows that (iii) and
(iv) are equivalent. Replacing by zvyr in (iv), we have

0= D(m,n,zyr) = D(m,n,x)yn + xyD(m,n,r) = xyD(m,n,r).

If M is a prime I'-ring then by Lemma 2.5, the above condition shows that (iv) and
(v) are equivalent. If Ann,.I =0, then the above condition shows that (iv) and (v)
are equivalent. Similarly we can prove the result for a left ideal I. a

Theorem 3.4. Let M be a 2, 3-torsion free prime I'-ring, I a non-zero ideal of M.
Let D1(+,-,-) and Da(-,-,) be permuting tri-derivations of M with traces di and do
respectively. If Di(da(x),z,x) =0 for all x € I, then D1 =0 or Dy = 0.

(

Proof. Assume that D;(d2(x),2,2) =0 for all x € I. For any z,y € I we have
Di(da(z +y),z +y,x +y) + Di(d2(—z + ),z + y,z +y) = 0.
Since M is 2-torsion free, it follows that

(45) 2D1(d2(x),x,y) + Dl(d2(y)7xvx) + 3D1(D2(I’,I,y),$,l’)
+3D1(Da(z, %,y),y,y) + 6D1(D2(2,y,y), ,y) =0
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for all z,y € I. Writing  + y for y in (45) and using the fact that M is 3-torsion
free, we get

(46) Dl(dQ(x)az%y) + 4D1(d2(1}),$,y) + 6D1(D2(l’,$,y),l‘,$)
+ 6D1(D2(£U,x,y),x,y) + 3D1(D2(9Cay,y)795795) = 0

for all z,y € I. Writing —x for  in (46) and using the fact that M is 2-torsion free,
we get

(47) 4D1(d2(x),x,y)+6D1(D2(¢,x,y),x,i):O

for all z,y € I. Replacing y for zay in (47) and using the hypothesis and the fact
that M is 2, 3-torsion free, we get

(48) dQ(I)O[Dl(I’7I,y)+d1(x)OéD2(I,I,y) =0
for all z,y € I and « € I". Writing yf8z for y in (48) implies that
(49) do(7)ayBD1(x, x, 2) + di(x)ayBDa(x, ,2) =0

for all z,y,z € I and «,3 € T. Writing z for z in (49) and using Lemma 2.4, we
have

(50) di(x)ayBda(z) =0

for all z,y € I and o, 8 € I'. In this case, suppose that d; and dy are both different
from zero. Then there exist 1,22 € I such that di(z1) # 0 and da(z2) # 0. In
particular, di(z1)ayfBda(z1) = 0 for all y € I and o, 3 € I'. Since dq(z1) # 0 and
M is prime I'-ring we have dz(x1) = 0. Similarly, we get di(x2) = 0. Then the
relation (49) reduces to the equation dy (z1)ayBD2(x1,21,2) = 0 for all y,z € T and
a, B € T'. Using this relation and Lemma 2.5 we obtain that Ds(x1,x1,2) = 0 for all
z € I because of dy(z1) # 0 (the mapping z — Do (21,1, 2) is a derivation). Thus,
we have Do(x1,x1,2) = 0. In the same way, we get Di(x1,21,2) = 0. Substituting
x1 + a2 for z, we obtain

dl(z) = dl(l‘l +$2)
= di(z1) + di(x2) + 3D1 (21, 21, 22) + 3D1 (21, 22, 22)
= di(z1) #0
and
dg(z) = d2(1‘1+$2)
= da(z1) + do(x2) + 3D (1, 21, 22) + 3Do (21, 22, 22)
= da(z2) #0.

Therefore we have d;(z) # 0 and da(z) # 0, a contradiction. Hence, we get d1(x) =0
for all x € T or do(x) = 0 for all x € I. Thus D; =0 or Dy = 0. O
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Corollary 3.5. Let M be a semi-prime I'-ring of characteristic not 2 and 3, 5-
torsion free, I a non-zero ideal of M. Let D(-,-,-) be a permuting tri-derivation of M
and d be the trace of D(-,-,-) such that d(I) C I. If AnnyI =0 and D(d(z),z,z) =0
for all x € I, then D = 0.

Proof. Take Dy = Dy = D in Theorem 3.4. By (50) we get d(x)ayBd(z) = 0 for
all x € I and o, 8 € T'. Since M is a semi-prime I'-ring, it follows from Lemma 3.2
that d(m) = 0 for all m € M so from Lemma 3.3 that D = 0. O

Theorem 3.6. Let M be a prime I'-ring of characteristic not 2 and 3, 5-torsion
free, I a non-zero ideal of M. Let D1(-,+,-) and Ds(-,-,-) be permuting tri-derivations
of M and let di and ds be traces of Di(-,-,-) and Da(-,-,-), respectively, such that
do(I) C I. If AnnyI =0 and D1(da(z),d2(x),2) =0 for all x € I, then Dy =0 or
Dy, =0.

Proof. For any z,y € I, we have
Dy (dz2(z +y),d2(z +y),z +y) + Di(d2(—z +y),do(—2 + y), —z + y) = 0.
Since CharM # 2, it follows that
(51) 2D1(d2(y),d2(:z:),x)+6D1(D2(z,x,y),d2(z),x)
+6D1(D2(xay7y)7d2(y)7m)+18D1(D2(xa'r7y)7D2(xay7y)7x)
+D1(d2($)7d2( ) )+6D1(D2(xay>y)vd2($)7y)

z),Yy
+ 6D1(D2(x,x,y),d2(y),y) + ng(DQ(xayay)aDQ(xayay)vy)
+9D1(Da(z, 2, y), Da(2, 2, y),y) =0

for all x,y € I. Writing 2z for = in (51) and using the fact that CharM # 2 and
M is 3-torsion free, we get

(52) 2D1(ds(y), d2(x), ) + 30D1(Ds(x, x,y), d2(x), x)
+ 18D1(D2($,.’L’,y),D2($,y,y),ﬂ?) +5D1(d2(9€),d2($)7y)
+ 6D1(D2(x,y,y),d2(x)7y) + 9D1(D2(x,x,y),Dz(x,%y),y) =0

for all z,y € I. Writing 2z for z in (52) and using the fact that CharM # 2 and
M is 3, 5-torsion free, we get

(53) 6D1(D2(z, z,y), d2(x), x) + D1(d2(x), d2(z),y) = 0
for all z,y € I. Replacing y for yBz in (53) implies that

(54) Dy(z,2,y)BD1(d2(2), x, x) + D1(d2(), z, y)Bda(z) = 0
for all z,y € I and € I'. Replacing y for zay in (54) induces

(55) do(x)ayBD(da(x), x, ) + Di(de(x), z, x)ayBda(z) =0
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for all z,y € I and «, 8 € T'. We now show that D;(da2(z),z,2) = 0 for all x € I.
Assume that there exists x1 € I such that Dq(da2(z1),21,21) # 0. Replacing z
by x1 in (55), then dao(x1) = 0 by Lemma 2.4. Therefore D;(da(z1),21,21) =
D1(0,z1,21) = 0, a contradiction. It follows from Theorem 3.4 that D; = 0 or
Dy =0. O

Corollary 3.7. Let M be a semi-prime I'-ring of characteristic not 2 and 3, 5-
torsion free, I a non-zero ideal of M. Let D(-,-,-) be a permuting tri-derivation of
M, d the trace of D(,-,-) such that d(I) C I. If Annil =0 and D(d(x),d(x),z) =0
for allx € I, then D = 0.

Proof. Replacing Dy (+,-,-) and Ds(-,-,-) by D(:,+,) in (54) implies that

(56) D(z,z,y)BD(d(z),z,z) + D(d(z),z,y)Bd(z) =0

for all z,y € I and «, 8 € I'. Replacing y for yaz in (56), then

(57) D(z,z,y)azB8D(d(z), z,x) + D(d(x), z,y)azfd(x) = 0

for all z,y,z € I and «, 8 € T. Replacing y by d(x) in (57) induces
D(d(zx),x,x)azBD(d(x),z,z) =0

for all x,y,z € I and a, 8 € T'. Thus, since M is a semi-prime I'-ring, we have D = 0
by Corollary 3.5. O

Theorem 3.8. Let M be a prime I'-ring of characteristic not 2, 3 and 5, 7-
torsion free, I a non-zero ideal of M. Let D1(-,-,-) and Dy(-,-,-) be permuting
tri-derivations of M, and di and do traces of Di(-,-,-) and Da(-,-,-), respectively,
such that do(I) C I. If di(da2(z)) = f(x) for all x € I, then D1 = 0 or Dy = 0,
where a permuting tri-additive mapping F(-,-,-) : M x M X M — M and f is the
trace of F(,-,).

Proof. For any z,y € I, we have

di(da(r +y)) + di(da(—2 +y)) = f(z +y) + f(—2 +y).

Using the hypothesis and CharM # 2,3, we have

(58) Dy (da(x),da(x),da2(y)) +27D1(Do(x, x,y), Da(x,y,y), D2(x,y,y))
+ 9d1 (D2 (x, z,y)) + 3D1(d2(2), d2(2), Da(z, 2, y))
+6D1(d2(2), d2(y), D2(2,y,y)) + 3D1(d2(y), d2(y), D2(x, 2, y))
+18D1(da(x), Da(x, 2, y), Da(z,y,y))
+9D1(d2(y), Da(, y,y), D2(2,9,y))
+9D1(d2(y), D2(z, 2, y), Da(z, 2, y)) = F(z,2,Y)



166 D. Ozden, M. A. Ozturk and Y. B. Jun

for all z,y € I. Writing 2z for x in (58) and using the fact that CharM # 2,3, we
get

(59) 5D1(da2(z), d2(2), d2(y)) + 27D1(D2(, z,y), Da2(2, y,y), D2(z, y,y))
+45d1 (D2 (z, 2,y)) + 63D1(dao(x), d2(z), Da(z, 2,9))
+6D1(d2(x), d2(y), D2(z,y,9))
+18D1(d2(x), D2(z, 2,y), D2(z,y, y))

+ 9D (d2(y), D2z, x,y), Da(z,x,y)) =0

for all =,y € I. Writing 2z for x in (59) and using the fact that CharM # 2,3, we
get

(60) 5D1(do(x), da(x),da(y)) + 315D (d2(x), do(x), Da(x, 2, y))
+ 45d1(D2(‘1a z, y)) + 18D1(d2($), DQ(xvxvy)vDQ(l'vyay)) =0

for all z,y € I. Writing 2z for = in (60) and using the fact that CharM # 2,3 and
M is 5, 7-torsion free, we get

(61) D1 (dz(x), d2(x), Do(z,2,y)) =0

for all z,y € I. Replacing y for yf8z in (61) implies

(62) Dy(x,xz,y)BD1(de(x),d2(x), z) + D1(da(x),da(x),y)BDa(z,x,2) =0
for all z,y,z € I and B € I'. Replacing y for zay in (62), then

(63) da(z)ayBD1(d2(2), d2(2), 2) + Di(da(2), d2(z), )y BDs(z, 2, 2) = 0

for all z,y,z € I and o, 8 € T'. Replacing z for z in (63) and using Lemma 2.4, we
get

(64) D (da(z),do(x), x)ayBda(x) =0

for all z,y € I and o, € I. Suppose that D;(da(x1),d2(z1),21) # 0 for some
x1 € I. Replacing = by z7 in (64), then da(x1) = 0 since M is a prime I'-
ring. Therefore Dy (da(x1),d2(21),21) = D1(0,0,21) = 0, a contradiction. Hence
D1 (dy(z),da(x),2) =0 for all z € I, and so D1 =0 or Dy = 0 by Theorem 3.6. O
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