Oscillations of Difference Equations with Several Terms

  • Ocalan, Ozkan (Afyon Kocatepe University, Faculty of Science and Arts, Department of Mathematics, ANS Campus)
  • Received : 2005.01.12
  • Published : 2006.12.23

Abstract

In this paper, we obtain sufficient conditions for the oscillation of every solution of the difference equation $$x_{n+1}-x_n+\sum_{i=1}^{m}p_ix_{n-k_i}+qx_{n-z}=0,\;n=0,1,2,{\cdots},$$ where $p_i{\in}\mathbb{R}$, $k_i{\in}\mathbb{Z}$ for $i=1,2,{\cdots},m$ and $z{\in}\{-1,0\}$. Furthermore, we obtain sufficient conditions for the oscillation of all solutions of the equation $${\Delta}^rx_n+\sum_{i=1}^{m}p_ix_{n-k_i}=0,\;n=0,1,2,{\cdots},$$ where $p_i{\in}\mathbb{R}$, $k_i{\in}\mathbb{Z}$ for $i=1,2,{\cdots},m$. The results are given terms of the $p_i$ and the $k_i$ for each $i=1,2,{\cdots},m$.

Keywords

References

  1. R. P. Agarwal, Difference equations and inequalities, Marcel Dekker, New York, 1992.
  2. R. P. Agarwal, S. R. Grace and D. O'Regan, Oscillation theory for difference and functional differential equations, Kluwer Academic Publishers, 2000.
  3. K. Gopalsamy, I. Gyori and G. Ladas, Oscillations of a class of delay equations with continuous and piecewise constant arguments, Funkcial Ekvac., 32(1989), 395-406.
  4. I. Gyori and G. Ladas, Oscillation theory of delay differential equations with applications, Clarendon Press, Oxford, 1991.
  5. G. Ladas and C. Qian, Comparison results and linearized oscillations for higher order difference equations, Internat. J. Math. & Math. Sci., 15(1992), 129-142. https://doi.org/10.1155/S0161171292000152
  6. G. Ladas, Oscillations of a equations with piecewise constant mixed arguments, Proceedings, International Conference on Differential Equations and Population Biology, Ohio University, March 21-25, New York, 1988.
  7. G. Ladas, Explicit conditions for the oscillation of difference equations, Journal of Mathematical Analysis and Applications, 153(1990), 276-287. https://doi.org/10.1016/0022-247X(90)90278-N
  8. G. Ladas, Ch. G. Philos and Y. G. Sficas, Necessary and sufficient conditions for the oscillation of difference equation, Libertas Mathematica, 9(1989), 121-125.