DOI QR코드

DOI QR Code

저신장율 대향류확산화염에서 에지화염 불안정성에 관한 열손실 효과

Effects of Heat Losses on Edge-flame Instabilities in Low Strain Rate Counterflow Diffusion Flames

  • 박준성 (순천대학교 기계우주항공공학부) ;
  • 황동진 (순천대학교 기계우주항공공학부) ;
  • 김정수 (순천대학교 기계우주항공공학부) ;
  • 길상인 (한국기계연구원 청정환경기계연구센터) ;
  • 김태권 (계명대학교 기계자동차공학부) ;
  • 박정 (순천대학교 기계우주항공공학부)
  • 발행 : 2006.10.01

초록

Experiments in methane-air low strain rate counterflow diffusion flames diluted with nitrogen have been conducted to study the behavior of flame extinction and edge flame oscillation in which flame length is less than the burner diameter and thus lateral conduction heat loss in addition to radiative heat loss could be remarkable at low global strain rates. Critical mole fraction at flame extinction is examined with velocity ratio and global strain rate. Onset conditions of edge flame oscillation and flame oscillation modes are also provided with global strain rate and added nitrogen mole fraction to fuel stream (fuel Lewis number). It is seen that flame length is closely relevant to lateral heat loss, and this affects flame extinction and edge flame oscillation considerably. Edge flame oscillations in low strain rate flames are experimentally described well and are categorized into three: a growing oscillation mode, a decaying oscillation mode, and a harmonic oscillation mode. The regime of flame oscillation is also provided at low strain rate flames. Important contribution of lateral heat loss even to edge flame oscillation is clarified

키워드

참고문헌

  1. Margolis, S. B., 1980, 'Bifurcation Phenomena in Burner-stabilized Premixed Flames,' Combust. Sci. Tech., Vol. 22, pp. 143-149 https://doi.org/10.1080/00102208008952379
  2. Bucmaster, J. D., 1983, 'Lecture on Mathematical Combustion,' SIAM, Vol. 43, pp. 1335-1349
  3. Bucmaster, J. D., 2002, 'Edge-flames,' Prog.Energy Combust. Sci., Vol. 28, pp. 435-475 https://doi.org/10.1016/S0360-1285(02)00008-4
  4. Kirkby, L. L. and Schmitz, R. A., 1996, 'An Analytical Study of the Stability of a Laminar Diffusion Flame,' Combust. Flame, Vol. 10, pp. 205-220 https://doi.org/10.1016/0010-2180(66)90077-0
  5. Julin, G and Calvin, P., 1979, 'Linear Stability Analysis of Non-adiabatic Flames: DiffusionalThermal Model,' Combust. Flame, Vol. 35, pp. 139-153 https://doi.org/10.1016/0010-2180(79)90018-X
  6. Sohn, C. H., Chung, S. H. and Kim, J. S., 1999, 'Instability-Induced Extinction of Diffusion Flames Established in the Stagnant Mixing Layer,' Combust. Flame., Vol. 117, pp. 404-412 https://doi.org/10.1016/S0010-2180(98)00088-1
  7. Kukuck, S. and Maltalon, M., 2001, 'The Onset of Oscillations in Diffusion Flames,' Combust. Theory Modelling., Vol. 5, pp. 217-240 https://doi.org/10.1088/1364-7830/5/2/306
  8. Im, H. G and Chen, J. H., 1999, 'Structure and Propagation of Triple Flames in Partially Premixed Hydrogen-Air Mixtures,' Combust. Flame, Vol. 119, pp. 436-454 https://doi.org/10.1016/S0010-2180(99)00073-5
  9. Lyons, K. M., Watson, K. A., Carter, C. D. and Donbar, J. M., 2005, 'On Flame Holes and Local Extinction in Lifted-jet Diffusion Flames,' Combust. Flame, Vol. 142, pp. 308-313 https://doi.org/10.1016/j.combustflame.2005.04.006
  10. Lee, B. J. and Chung, S. H., 1997, 'Stabilization of Lifted Tribrachial Flames in a Laminar Nonpremixed Jet,' Combust. Flame, Vol. 109, pp. 163-172 https://doi.org/10.1016/S0010-2180(96)00145-9
  11. Lee, J., Won, S. H., Jin, S. H. and Chung, S. H., 2003, 'Lifted Flames in Laminar Jets of Propane in Coflow Air,' Combust. Flame, Vol. 135, pp. 449-462 https://doi.org/10.1016/S0010-2180(03)00182-2
  12. Upatnieks, A., Driscoll, J. F., Rasmussen, C. C. and Ceccio, S. L., 2004, 'Liftoff of Turbulent Jet Flames-Assessment of Edge Flame and Other Concepts Using Cinema-PfV,' Combust. Flame, Vol. 138, pp. 259-272 https://doi.org/10.1016/j.combustflame.2004.04.011
  13. Ross, H. D., 1994, 'Ignition of and Flame Spread over Laboratory-scale Pools of Pure Liquid Fuels,' Prog. Energy Combust. Sci., Vol. 20, p. 17 https://doi.org/10.1016/0360-1285(94)90005-1
  14. Hartly, L. J. and Dold, J. W., 1991, 'Flame Propagation in a Nonnifonn Mixture: Analysis of a Propagating Triple-flame,' Combust. Sci. Tech., Vol. 80, pp. 23-46 https://doi.org/10.1080/00102209108951775
  15. Short, M. and Liu, Y., 2004, 'Edge-flames Structure and Oscillations for Unit Liwis Numbers in a Non-premixed Counterflow,' Combust. Theory Modelling, Vol. 8, pp. 425-447 https://doi.org/10.1088/1364-7830/8/3/001
  16. Kurdymov, V. N. and Matalon, 2004, 'Dynamics of an Edge Flame in a Mixing Layer,' Combust. Flame, Vol. 139, pp. 329-339 https://doi.org/10.1016/j.combustflame.2004.09.005
  17. Daou, R., Daou, J. and Dold, J., 2004, 'The Effect of Heat Loss on Flame Edge in a Non-premixed Counterflow within a Thermo-diffusive Model,' Combust. Theory Modelling, Vol. 8, pp. 683-699 https://doi.org/10.1088/1364-7830/8/4/002
  18. Santoro, V. S., LiMn, A. and Gomez, A., 2000, 'Propagation of Edge Flames in Counterflow Mixing Layer : Experiments and Theory,' Proc. Combust. Inst, Vol. 28, pp. 2039-2046 https://doi.org/10.1016/S0082-0784(00)80611-6
  19. Shay, M. L. and Ronney, P. D., 1998, 'Nonpremixed Edge Flames in Spatially Varying Straining Flows,' Combust. Flame, Vol. 112, pp. 171-180 https://doi.org/10.1016/S0010-2180(97)81765-8
  20. Carnell Jr, W. F. and Renfro, M. W., 2005, 'Stable Negative Edge Flame Formation in a Counterflow Burner,' Combust. Flame, Vol. 141, pp. 350-359 https://doi.org/10.1016/j.combustflame.2005.01.010
  21. Park, J., Oh, C. B., Kim, K. T., Kim, J. S. and Hamins, A., 2005, 'Multi-dimensional Effects on Low Strain Rate Flame Extinction in Methane/air Counterflow Non-premixed Flame,' 5th Asia-Pacific Conference on Combustion, pp. 345-348
  22. Bucmaster, J. D. and Zhang, Y., 1999, 'A Theory of Oscillating Edge-flames,' Combust. Theory Modelling., Vol. 3, pp. 547-565 https://doi.org/10.1088/1364-7830/3/3/307
  23. Chellian, H. K., Law, C. K., Ueda, T., Smooke, M. D. and Williams, F. A., 1990, 'An Experimental and Theoretical Investigation of the Dilution, Pressure and Flow-field Effects on the Extinction Condition of Methane-Air-nitrogen Diffusion Flames,' Proc. Combust. Inst, Vol. 23, p. 503
  24. Maruta, K., Yoshida, M. and Ju. Y, Niioka., 1996, 'Experimental Study on Methane-air Premixed Flame at Small Stretch Rates in Microgravity,' Proc. Combust. Inst, Vol. 26, p. 1283 https://doi.org/10.1016/S0082-0784(96)80346-8
  25. Kee, R. J., Miller, J. A., Evans, G. H. and DixonLewis, G. 1988, 'A Computational Model of the Structure and Extinction of Strained, Opposed Flow, Premixed Methane-air Flames,' Proc. Combust. Inst, Vol. 22, p. 1479
  26. Bowman, C. T., Hanson, R. K., Davison, D. F., Gardiner, W. C., Lissianski, V., Smith, G. P., Golden, D. M., Frenklach, M. and Goldenberg, M., 1999, http://www.me.berkely.edu/gri_mechl
  27. Kee, R. J., Rupley, F. M. and Miller, J. A., 1989, 'Chernkin- II,' Sandia Report SAND89-8009B
  28. Kee, R. J., Dixon-Lewis, g., Warnatz, J., Coltrin, M. E. and Miller, J. a., 1994, 'A Fortran Code Package For the Evaluation of Gas-phase Multicomponent Transport,' Sandia Report SAND86-8246
  29. Bucmaster, J. D., 2001, 'Large-Lewis-Number Instabilities of Model Edge-flames,' Combust. Flame, Vol. 127, pp. 2223-2233 https://doi.org/10.1016/S0010-2180(01)00324-8