Bacterial Communities in Microbial Fuel Cells Enriched with High Concentrations of Glucose and Glutamate

  • Choo Yeng-Fung (Water Environment and Remediation Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Lee Ji-Young (Water Environment and Remediation Research Center, Korea Institute of Science and Technology (KIST)) ;
  • Chang In-Seop (Department of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST)) ;
  • Kim Byung-Hong (Water Environment and Remediation Research Center, Korea Institute of Science and Technology (KIST))
  • 발행 : 2006.09.01

초록

In this study, glucose and glutamate (copiotrophic conditions) were used to enrich electrochemically active bacteria (EAB) in a microbial fuel cell (MFC). The enriched population consisted primarily of ${\gamma}$-Proteobacteria (36.5%), followed by Firmicutes (27%) and O-Proteobacteria (15%). Accordingly, we compared our own enrichments done under many different conditions with those reported from the literature, all of which support the notion that electrochemically active bacteria are taxonomically very diverse. Enrichments with different types and levels of energy sources (fuels) have clearly yielded many different groups of bacteria.

키워드

참고문헌

  1. Bond, D. R., D. E. Holmes, L. M. Tender, and D. R. Lovley. 2002. Electrode-reducing microorganisms that harvest energy from marine-sediments. Science 295: 483-485 https://doi.org/10.1126/science.1066771
  2. Chang, I. S., H. S. Moon, O. Bretschger, J. K. Jang, H. I. Park, K. H. Nealson, and B. H. Kim. 2006. Electrochemically active bacteria (EAB) and mediator-less microbial fuel cells. J. Microbiol. Biotechnol. 16: 163-177
  3. Chang, I. S., J. K. Jang, G C. Gil, M. Kim, H. J. Kim, B. W. Cho, and B. H. Kim. 2004. Continuous determination of biochemical oxygen demand using microbial fuel cell type biosensor. Biosens. Bioelectron. 19: 607-613 https://doi.org/10.1016/S0956-5663(03)00272-0
  4. Holmes, D. E., D. R. Bond, R. A. O'Neal, C. E. Reimers, L. R. Tender, and D. R. Lovley. 2004. Microbial communities associated with electrodes harvesting electricity from a variety of aquatic sediments. Microb. Ecol. 48: 178-190 https://doi.org/10.1007/s00248-003-0004-4
  5. Kang, K. H., J. K. Jang, T. H. Pham, H. Moon, I. S. Chang, and B. H. Kim. 2003. A microbial fuel cell with improved cathode reaction as a low biochemical oxygen demand sensor. Biotechnol. Lett. 23:1357-1362
  6. Kim, B. H., H. J. Kim, M. S. Hyun, and D. H. Park. 1999. Direct electrode reaction of a Fe (Ill)-reducing bacterium, Shewanella putr'efaciens. J. Microbiol. Biotechnol. 9: 127-131
  7. Kim, B. H., H. S. Park, H. J. Kim, G. T. Kim, I. S. Chang, J. Lee, and N. T. Phung. 2004. Enrichment of microbial community generating electricity using a fuel cell-type electrochemical cell. Appl. Microbiol. Biotechnol. 63: 672-681 https://doi.org/10.1007/s00253-003-1412-6
  8. Kim, B. H., I. S. Chang, G. C. Gil, H. S. Park, and H. J. Kim. 2003. Novel BOD (biological oxygen demand) sensor using mediator-less microbial fuel cell. Biotechnol. Lett. 25: 541-545 https://doi.org/10.1023/A:1022891231369
  9. Lee, J., N. T. Phung, I. S. Chang, B. H. Kim, and H. C. Sung. 2003. Use of acetate for enrichment of electrochemically active microorganisms and their 16S rDNA analyses. FEMS Microbiol. Lett. 223: 185-191 https://doi.org/10.1016/S0378-1097(03)00356-2
  10. Logan, B. E., C. Murano, K. Scott, N. D. Gray, and I. M. Head. 2005. Electricity generation from cysteine in a microbial fuel cell. Wat. Res. 39: 942-952 https://doi.org/10.1016/j.watres.2004.11.019
  11. Moon, H. S., I. S. Chang, and B. H. Kim. 2006. Continuous electricity production from artificial wastewater using a mediator-less microbial fuel cell. Bioresouce Technol. 97: 621-627 https://doi.org/10.1016/j.biortech.2005.03.027
  12. Pham, T. H., J. K. Jang, I. S. Chang, and B. H. Kim. 2004. Improvement of the cathode reaction of a mediator-less microbial fuel cell. J. Microbiol. Biotechnol. 14: 324-329
  13. Phung, T. N., J. Lee, K. H. Kang, I. S. Chang, M. G. Gadd, and B. H. Kim. 2004. Analysis of microbial diversity in oligotrophic microbial fuel cells using 16S rDNA sequences. FEMS Microbiol. Lett. 233: 77-82 https://doi.org/10.1016/j.femsle.2004.01.041
  14. Tender, L. M., C. E. Reimers, H. A. Stecher III, D. E. Holmes, D. R. Bond, D. A. Lowy, K. Pilobello, S. J. Fertig, and D. R. Lovley. 2002. Harnessing microbially generated power on the seafloor. Nat. Biotechnol. 20: 821-825 https://doi.org/10.1038/nbt716